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Gravity-driven geophysical mass flows often consist of a heterogeneous fluid—solid
mixture. The complex interplay between the components leads to phenomena such as
lateral levee formation in avalanches, or a granular front and an excess fluid pore
pressure in debris flows. These effects are very important for predicting runout and
the forces on structures, yet they are only partially represented in simplified shallow
flow theories, since rearrangement of the mixture composition perpendicular to the
main flow direction is neglected. In realistic flows, however, rheological properties
and effective basal drag may depend strongly on the relative concentration of the
components. We address this problem and present a depth-averaged model for shallow
mixtures that explicitly allows for rearrangement in this direction. In particular we
consider a fluid-solid mixture that experiences bulk horizontal motion, as well as
internal sedimentation and resuspension of the particles, and therefore resembles the
case of a debris flow. Starting from general mixture theory we derive bulk balance
laws and an evolution equation for the particle concentration. Depth-integration
yields a shallow mixture flow model in terms of bulk mass, depth-averaged particle
concentration, the particle vertical centre of mass and the depth-averaged velocity. This
new equation in this model for the particle vertical centre of mass is derived by
taking the first moment, with respect to the vertical coordinate, of the particle mass
conservation equation. Our approach does not make the Boussinesq approximation
and results in additional terms coupling the momentum flux to the vertical centre of
mass. The system is hyperbolic and reduces to the shallow-water equations in the
homogeneous limit of a pure fluid or perfect mixing. We highlight the effects of
sedimentation on resuspension and finally present a simple friction feedback which
qualitatively resembles a large-scale experimental debris flow data set acquired at the
Illgraben, Switzerland.
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FIGURE 1. Schematic of a granular-front debris flow. A precursory water surge is followed
by the head consisting of a mixture of settled big particles and fluid. After the passage of
the front the average size of the particles gets smaller and the number of suspended particles
increases.

1. Introduction

Geophysical mass flows such as avalanches, rockfalls and debris flows have
enormous destructive power. They are a major hazard in mountainous regions all over
the world. Although these flows have many differences they all give rise to equations
with a similar structure, that is mass conservation for the different components and
momentum conservation that is a balance between inertia, gravity and drag. If the
surface over which the flow occurs is sufficiently smooth then gravity also acts to
smooth out the flow and eventually the shape of the flowing body exhibits a shallow
flow geometry, meaning that properties vary much more slowly parallel to the slope
than perpendicularly. This enable an expansion which can be framed as a depth-
averaged model. The subtleties of this are sometimes overlooked. For example a direct
expansion to second order gives Benny’s equation (Benny 1973) which is unstable. To
accurately predict the onset of instabilities such as roll waves a complicated analysis is
necessary (Scheid, Ruyer-Quil & Manneville 2006). Despite these difficulties shallow
geophysical flow models have been derived for and applied to many different mass
flow phenomena such as avalanches, sub-aquatic and sub-aerial debris flows, rockfalls,
and pyroclastic flows to name a few (see for example Savage & Hutter 1989; Iverson
& Denlinger 2001; Gray 2002; Pitman & Le 2005; Iverson 2009; Christen, Kowalski
& Bartelt 2010).

A characteristic of geophysical flows is that they are highly heterogeneous and
consist of many different fluid, solid and gaseous constituents which experience strong
coupling forces. Mathematical geophysical flow theories are therefore conceptually
idealized either as a homogeneous continuum with an apparent non-Newtonian
rheology characterizing the particular type of flow involved, or as a multi-component
mixture that explicitly accounts for the complex coupling. Models of the first type
can work well in situations where their assumptions about the vertical distributions
of components are valid. However, whenever the internal rearrangement of the
components is important, such as in initiation and stopping processes, they will have
difficulties accurately describing the flow. Since these models do not include this
rearrangement they also cannot model such phenomena as the formation of a granular
front or changes in the excess fluid pore pressure due to suspended particles (see
figure 1). Models that capture the multi-component nature of the flow allow for a
change in the mixture composition. Either the mixture character is considered when
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determining the bulk stress composition (see Iverson & Denlinger 2001; Denlinger &
Iverson 2001; Iverson 2009; Berzi & Jenkins 2009) or relative, horizontal motion is
explicitly accounted for (see Pitman & Le 2005). Vertical rearrangement within the
mixture, however, is often neglected as it cancels out during common depth-integration
procedures, despite its great importance even in shallow flows. In debris flows for
instance, sedimentation, segregation and resuspension processes lead to a redistribution
of the mixture components that on the one hand feeds back on the bulk dynamics and
on the other hand plays a crucial role in the initiation and deposition regime.

We address this problem and propose an extended, depth-averaged, shallow
mixture flow model, that explicitly accounts for a vertical rearrangement of its
components. In particular we will consider a fluid—solid mixture that is subject to
bulk horizontal motion as well as internal sedimentation and resuspension processes.
In the geophysical context these flows can be thought of mobilized sediments and
rocks saturated by interstitial water and hence resemble sediment transport or debris
flows. However, our derivation and arguments are very general and can directly
be transferred to other shallow multi-component mixtures, such as powder snow
avalanches, pyroclastic flows or polydisperse dry granular flows. Our proposed model
has similar objectives to Iverson’s theory (Iverson 1997, 2009), that is to include the
effects of changing pore pressure on flow dynamics. It can be seen as an extension
of the classical theory of Savage & Hutter (1989) and as an approximation to the
two-component theory of Pitman & Le (2005). If we were to consider the full
Mohr—Coulomb closure the proposed model would indeed reduce to the Savage—Hutter
equations in the limit of two similar constituents. On the other hand, the proposed
model is less comprehensive than the Pitman & Le approach as we project the systems
dynamics onto the bulk velocity rather than separate velocities for each phase. This,
however, results in the clear benefit of arriving at a well-posed and hyperbolic system
of equations without the inconvenient elliptic degeneracy that can be observed in the
Pitman & Le theory. Physically this occurs because the two phases are very strongly
coupled and the system can be well approximated by a bulk velocity and an algebraic
closure for the velocity difference; this is the essence of our approach. Instead of
taking a very process-orientated viewpoint, which led to the formulation of very
specialized extra equations in Iverson’s model, we try to put focus on a methodology
to capture the simplest rearrangement within a shallow mixture. In that sense our
contribution is to be seen as a complementary extension to existing theories that will
allow great accuracy with regard to field observations.

Though we wish to allow for a varying mixture density, we still want to make use
of the simplifying framework of depth-averaging, which results in a model of reduced
dimensionality. We achieve this by starting from general mixture theory and derive
bulk balance laws, as well as an evolution equation for the vertical particle profile.
Similarly to many other geophysical mass flow models, we then employ the shallow-
water approximation and depth average our system. In the case of non-constant
mixture density, the depth-averaged bulk momentum balance explicitly depends on the
vertical mass centre. A closure is derived along the lines of a moment-based approach
that projects the particle profile onto the vertical centre of mass. This procedure allows
a separate consideration of horizontal (parallel to the slope) bulk flow dynamics and
vertical (normal to the slope) internal processes. Both are coupled through the bulk
pressure and gravitational and frictional source terms.

To highlight the innovation in our model we discuss it in the context of the very
simplest approximations. The model presented in this paper is therefore considerably
simpler than the state of the art. We do discuss in the appropriate sections, however,
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how more complicated closures and possible generalizations can be incorporated.
Although most of the arguments are formed for the specific case of fluid—solid
mixtures, our approach, namely tracking the vertical distribution of the mixture within
a shallow flow framework, can be widely applied to many geophysical flows including
turbidity currents and powder snow avalanches. The approach can also be applied to
flows such as rockfalls where there is no fluid component, but instead the different
components are different classes of rock sizes.

In §2, we discuss the general framework of mixture theory for a multi-component
fluid and specify this for the case of a binary liquid—solid mixture. We derive an
evolution equation for the particle volume fraction that will later serve as the basis
for an evolution equation of the vertical centre of mass. Section 3 is devoted to
the derivation of the depth-averaged system. The basic concept of depth-averaging in
the classical constant-density case is generalized to a non-constant mixture density
by considering higher moments of the basic balance laws. In §4 we discuss the
mathematical properties of our theory and the physical relevance of the extended
shallow geophysical flow equations. We conclude with a final discussion.

2. Governing equations

2.1. General mixture theory

Let us consider a multi-component mixture denoted by i € {1, ..., N}. The individual
mass and momentum equations are given by

00i + V- (up) =0, (2.1a)
0(wip;) + V(uup)) = —Vo, + pg + I.. (2.1b)

For details on the derivation of these equations see for instance Ishii & Hibiki (2006)
and Drew & Passman (1998). The (mass) density of component i is denoted by p;
and its velocity u,;. The total stress acting on component i is given by the symmetric
tensor o;, and I; is the total force acting on this component from the other components;
g is the acceleration due to gravity. Momentum conservation implies ) I; = 0. There
is no net mass transfer between the constituents and hence no source term in the
mass conservation equation (2.1a). As we consider gravity-induced geophysical mass
flows, the general reference frame will be given by an inclined coordinate system with
slope angle &. Hence, both components of the gravitational acceleration g are non-
trivial in general. The x-coordinate measures downslope and the y-coordinate measures
vertically, by which we mean normal to the slope. Starting from this theoretical
framework we will now derive equations that capture sedimentation and resuspension
of particles in a fluid. The general framework of this derivation has previously been
proposed and used to derive the structurally similar segregation—remixing model for
bi-dispersed granular matter with and without background fluid (Gray & Thornton
2005; Gray & Chugunov 2006; Thornton, Gray & Hogg 2006).

Balance laws for the bulk of the flow are derived by summing up the individual
mass and momentum equations. This results in

dp+V-@p) =0, (2.2q)
0,(up) + V(uup) = —Vo + pg, (2.2b)

in which o = )" 0; is the bulk stress and p = ) p; the bulk density. The barycentric
(mass-averaged) velocity u is defined as u = ) (p;/p)u,. For the equation of state we
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write
P (2.3)
T Qi

Here, o; denotes the constant intrinsic material density in unit mass per volume of
component { and v is a function of space, which denotes the percentage of space
filled by all the considered components. For a saturated mixture of particles in
a fluid we would have v =1 inside the flow, and v = 0 outside the flow. When
considering the granular components only, v stands for the granular volume fraction.
In both cases we assume that in a material frame convected with the bulk velocity
u, v is constant. Differentiating (2.3) with respect to time ¢ and substituting in mass
conservation equation (2.1a) yields V - (3 _.(p;/0:)u;) = 0, where (p;/0;) is the apparent
volume fraction of component i. Henceforth we will assume that the flow is fully
saturated within a well-defined region between the slope and the free surface, that is
v = 1. This implies that within the flowing body the volume fractions p;/0; and mass
concentrations p;/p of the components respectively sum up to one:

Pi Pi
= =1, 2. 24
Z Oi Z 1Y @4
Owing to different intrinsic densities o; of the components, the volume fractions will
generally be different from the corresponding mass fractions p;/p # p;/0;- Hence, we
have to distinguish between the volume-averaged velocity field v =) _.(p;/0:)u; which
is divergence free (V -v =0), and its barycentric counterpart u =Y (po;/p)u; with a
non-trivial divergence. In the subsequent analysis we formulate the bulk mixture model

in terms of the barycentric velocity u.

2.2. A binary fluid-solid mixture model

The previous considerations have been general. Henceforth we restrict our analysis to
a binary mixture of solid particles (i = p) and a fluid component (i =f). We define
«, the volume fraction of the solids o = p,/0,, hence apparent density and constant
intrinsic density are related by

Py =00, pr=1—a)og. (2.5)

In order to account for sedimentation and resuspension processes within the flowing
body, we want to explicitly allow for a small relative motion between the solids and
the surrounding fluid. Let us consider the solids mass conservation written in terms of
the barycentric velocity u and the slip velocity d =u, — u,. With

up=u+ﬁd and uf=u—&d, (2.6)
o o
the individual mass balances are
8.0, +V - (upy) =~V - (p’;f’fd) , (2.7a)
dpr+V - (up) =V - <p”:fd> . (2.7b)

Following several authors (Pitman & Le 2005; Iverson 2009; Pailha & Pouliquen
2008), we neglect a viscous contribution to the fluid stress tensor and consider
pressure only: Vo, = Vp,. Furthermore we split the isotropic pressure p; into a purely
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hydrostatic contribution p, and its deviation p,, which is commonly also called the
excess pore pressure. Hence, Vo = Vp; = V(p, + p.). We are assuming that the
slip velocity d is small so the momentum coupling can be formulated in terms of a
buoyancy force plus a drag force, hence Iy = —I, = (p,07/p)(d/T) + 2 Vp,, where
is a viscous relaxation time scale. The individual components momentum equations
transform into

d
Lolr e _ uvp,, (2.84)
T

pp(0u, +u,Vu,) = —Vo,+ p,g —

d
Pl 4 aVp,, (2.8b)
T

pr Oy +urVuy) = —V(p, +pn) + prg +
On the left-hand side we again have the convective terms. The right-hand side of
the particle momentum equation is composed of the particle stress, the gravitational
acceleration and the two contributions to the coupling terms, namely buoyancy and
viscous drag. The right-hand side of the fluid equation has the same general structure;
however in this the fluid stress hydrostatic and excess pore pressure contributions are
separated out.

2.3. Evolution of the particle volume fraction

Subtracting the individual momentum balance equations (2.8a,b) from each other and
neglecting quadratic terms in d yields an evolution equation for the slip velocity d

1 1 1-6§ d

od+d-Vu+u-Vd =——Vp,+ —Vp, + —Vp, — —, 2.9)

P 193 or T
where 6 = gy/0, is the intrinsic density ratio. We consider cases in which a
characteristic slip velocity due to relative motion of the components is small in
comparison to the horizontal bulk flow speed (d, < u,). This is for instance true for
mudflows or debris flows in moderately inclined terrain. In Iverson (1997) a scaling
argument for the relative discharge is discussed in detail. For negligible topography
curvature however, vertical motion is solely due to redistribution of the components.
In particular it is not superposed by a bulk motion. Hence we will consider slip of
the component in the vertical y-direction and neglect horizontal slip d,. Convective
acceleration of the slip velocity plays a negligible role such that to a first-order
approximation we get

1 1
dy=1 (— \Dp + 8ype> + gt (1 =96). (2.10)
Op Pr

This approximation is valid when the time scale t is much smaller than the times
over which the driving terms vary. Here, we substituted for the known hydrostatic
pressure gradient Vp, = o;g. The last term denotes sedimentation due to buoyancy
forces. Since the vertical coordinate axis opposes the y-component of the gravitational
acceleration, g, will be negative. This implies that g,7(1 — §) will be negative for
particles that have a higher density than the surrounding fluid (§ < 1). If the intrinsic
densities difference is zero (§ = 0) we deal with a neutrally buoyant situation and
this term is zero. The first and the second term in (2.10) denote particle pressure and
excess fluid pore pressure respectively. If all the particles are in suspension we will
have a maximal excess pore pressure and the particle pressure is minimal. When the
particles settle down and form a load-bearing matrix p, vanishes and the particles are
supported by p,. During the settling of particles there is a tendency for the excess pore
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pressure to be transferred to particle pressure, whereas during resuspension the particle
pressure is transferred to excess fluid pore pressure. In the following we separate
out the constant hydrostatic pressure p, and define excess pore pressure and particle
pressure as fractions X and 1 — X of the reduced hydrostatic pressure p = p — p,, hence

pe=Xp and p,=(—X)p. (2.11)

If X =1 the complete extra stress is carried by the fluid. This for instance is the
case when all particles are suspended. For X = 0 the complete stress is taken by
a load-bearing matrix of particles and the fluid stress p; reduces to the hydrostatic
pressure p,. We substitute in Vp = (p — g)g,, and get

dy= L (tXp,(1 — 8)g, + 153, X). 2.12)
L5 Pp
The coefficient g,(1 — &) accounts for the reduced buoyancy. We define the
sedimentation velocity V = —1g,(1 — §) and diffusion parameter D = tp/(¢0,). Here,
¢ is the material-dependent maximum packing fraction of the particles. We then
substitute (2.12) into the particle mass conservation equation (2.7a), which yields

0pp +V - (up,) =0,(XVp, — Dp0,0,X). (2.13)

For zero excess pore pressure, X = 0, the sedimentation flux vanishes as the complete
stress is taken by the solid matrix, whereas X =1 yields the sedimentation flux Vp,.
A constant stress fraction X, however, is unrealistic. Rather, X should depend on the
solids volume fraction. In a dilute suspension less stress will be carried by the solids
than in a dense packing. We therefore expect a decrease of X with an increasing
particle volume fraction and model X according to X =1 — «/¢. In this expression
¢ again stands for the maximum packing fraction so that we have X = 0 when
the particles have attained a random close packing where they fully bear their own
weight (minus buoyancy). For monodisperse glass beads ¢ is between (0.59 and 0.74)
depending on the optimality of the packing. For polydisperse natural mixtures it may
be higher. Substituting this closure for X into (2.13) and dividing it by the particle
intrinsic density @, yields the following evolution equation for the solids volume
fraction «:

B+ V - (uat) = 9, [Va <1 - Z) + Daya] . 2.14)

The advective flux term on the left-hand side corresponds to transport with the
barycentric velocity field u. The first term on the right-hand side represents nonlinear
sedimentation of Richardson—Zaki type (Richardson & Zaki 1954), and the second
term represents diffusion of the particles, including resuspension. If the particles and
the surrounding fluid have the same intrinsic density, the density ratio will be one
(6 = 1) and the sedimentation velocity vanishes. Related concepts to analyse nonlinear
sedimentation can also be found in Berres, Biirger & Tory (2005). Sedimentation in a
convecting fluid is studied in Lavorel & Le Bars (2009).

2.4. The dynamics of sedimentation and resuspension
2.4.1. Equilibrium profile
Equation (2.14) describes the evolution of the particle volume fraction in the
presence of bulk horizontal flow, together with internal sedimentation and resuspension.
For a steady flow with no x variation (2.14) reduces to a one-dimensional differential
equation for «. We introduce the Péclet number Pe = VH/D, defined as the ratio
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of sedimentation time scale V/H and diffusion time scale D/H”. The height of the
flowing body, denoted by H, defines the observation scale. This yields

5, [Pea (1 - ;) + Haya] = 0. (2.15)

By identifying Pe = 1/z, the same equation can be found in Gray & Chugunov (2006)
as the equilibrium equation for the segregation—remixing problem. Since the flux must
vanish at the upper and lower surfaces it must be zero everywhere. This implies
that sedimentation Pex(1 — o/¢p) exactly balances the diffusion Hd,«. The vertical
distribution of the particles throughout the mixture is determined by this balance.
Henceforth we will refer to the vertical distribution of « as the solids profile. A
large Péclet number corresponds to a profile dominated by sedimentation, in which
a will be close to ¢ in a region near the ground and close to O near the surface.
In the small-Péclet-number case the diffusive flux dominates sedimentation, which
implies an almost uniform mixture. For a density ratio equal to one (6 = 1) we have
Pe =0, and hence 9,0 =0 which implies o = constant. The solution to (2.15) on the
interval y € [0, H] is given by

efPey/H

C is a positive constant of integration and is chosen in such a way that it fulfils the

constraint H, = fOH a(y) dy. H, denotes the y-integrated particle volume of the mixture,
hence H,/H stands for the average volume fraction. For a constant o« = 0.5 we for
instance have H, = H/2. We find

_exp[PeH,/H — ¢/Hp] — 1
~ exp[Pe(H,/H)/H¢] — 1

(2.17)

For an average volume fraction that equals the maximum packing fraction, hence
H,/H = ¢, the solution degenerates to « = ¢. Larger values for H,/H are not physical.
Some specific solutions for the particle profile «(y) are displayed in figure 2 and
resemble figure 3 of Gray & Chugunov (2006).

2.4.2. Relaxation towards the equilibrium
In order to investigate how the system is forced into its equilibrium (2.16), we
consider the unsteady sedimentation—resuspension process

Bt =0, [Va (1 - Z) +D8y01] . 2.18)

If o were scaled by ¢ this would be the same equation as presented by Gray &
Thornton (2005) and Gray & Chugunov (2006) for segregation and remixing processes
in bi-disperse granular media. We follow the same solution approach. The full initial
value problem (IVP) is given by

O<y<H: doa—0[Va(l—a/¢)+Dia]l=0, (2.19a)

t=0: «a0,y)=ay()), (2.19b)
y=0,H: Voa(l —a/¢)+ Dia=0. (2.19¢)
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FIGURE 2. Equilibrium solution of the solids profile o(y): o versus normalized height y/H.
The integrated particle volume is H, = 0.5, and in (a) the maximum packing fraction is
¢ = 1.0 and in (b) ¢ = 0.75. Large values of Pe correspond to a profile dominated by
sedimentation, that is a lower region of maximum solids fraction and an upper region of
pure fluid. Small values of Pe correspond to a well-mixed layer where the solids fraction
only decreases slowly with depth. The two limiting states are given by Pe = oo (completely
settled) and Pe = 0 (homogeneous mixture).

We introduce space and time scaled coordinates, as well as ¥, a Cole—Hopf
transformation of the volume fraction o:

D¢? D¢ 1 Yad

Substituting these into the IVP yields a linear diffusion equation with linear boundary
conditions:

0<i<ty: Y =0Y, (2:21a)
¢
t=0: Yo(¢)=exp (/ @o(¢') — q;dc’) : (2:21b)
0
¢2

¢=0,¢n: Y= RA (2.21¢)
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In order to simplify boundary condition (2.21¢) we follow Gray & Chugunov (2006)
and separate out the exponentially decaying contribution e* by making the ansatz

Y 1) =ew(t, 1), (2.22)
which yields
0<i<ty: dw=0jw—po, (2.23a)
t=0: () =1v(), (2.23b)
2
£=0,¢y: 3{20) = Ia) (2.23¢)

At steady state E)?a)s = Bw,, the boundary condition (2.23c¢) reduces to
(ﬂ — ¢ /4) w; = 0. And, since w,; does not vanish at the boundaries ¢ =0, ¢y (2.21¢)
can only hold if B = ¢?/4. For this choice of B, however, we can substitute (2.23a)

into (2.23¢), and get d,w; = 0. Since w, does not change in time it is completely
determined by the initial condition according to

(=0 w@01)=1, (2.24a)

{=Cn: @ 1)=vYo(ln). (2.24b)

The solution to the linear diffusion equation can now be written as the superposition of
a steady contribution w;, and an unsteady part, w,. Integration yields the steady part

w,(£) = Cre " + Cref? (2.25a)

with C; = (e — Yo(¢y)ebi’?) /(e — 1) and C, = 1 — C,. Back-transformation yields
the equilibrium solution computed earlier. The unsteady part is solved in terms of
Fourier modes and results in

01, 5) =Y a,e " sin <””§> , (2.26a)

p— 9%

where p, = (nznz/gf,) + (¢?/4) are the dimensionless decay constants. The Fourier
sine coefficients a, are given by

2 [ . (nmg
a, == | o, ¢) — 0,00, )] sin () dc. (2.27)
¢u Jo S
All in all, we get a solution of the form
V(@) =" (@,(0) + 048, 7)), (228)

The corresponding expression for « is given by reversing the time and space scaling as
well as the Cole—Hopf transformation in (2.20). Figure 3 is once again inspired by the
previous work of Gray & Chugunov (2006) and shows the solution to (2.18) for two
different initial configurations, the first being a homogeneous mixture in the vertical
direction and the second an inversely stratified initial condition. For more details on
the derivation we refer to Gray & Chugunov (2006). That paper also includes the
analysis of various initial configurations.

2.5. Projection on to the vertical centre of mass

In order to incorporate information on the vertical profile into a depth-averaged theory,
we will now project «(t,y) onto two scalar, time-dependent variables. The first of
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(@) 1.0

FIGURE 3. The evolution of a mixture’s solids profile «(y) with time ¢ towards the
equilibrium profile for H, = 0.5, Pe = 10 and ¢ = 1. The y-axis indicates the normalized
depth of the flow and the greyscale the solids volume fraction «(y). For Pe = 10
sedimentation dominates diffusion and hence the particles tend to accumulate near the ground
in equilibrium. The two plots differ in their initial conditions: (@) an initially homogeneous
mixture throughout the depth and (b) an unstably stratified initial condition in which the
particles are at the top. The thick line indicates the position of the vertical centre of mass A,
for every point in time. In (b) the relaxation time for the inversely stratified initial condition is
slightly longer.

these is simply the equivalent height mass holdup H,. A natural candidate for the
second is the vertical centre of mass, defined as the ratio of the solids density first
moment with respect to y and the solids mass holdup,

H H
/ yop(y, 1) dy / ya(y, t) dy
0 __JO

H - H
| aooe [avina
0 0

since p, = ag,. One motivation for this choice is that it captures the gravitational
potential energy of the solid component. Also, for a non-constant vertical mixture
density, it is exactly the mass centre /, that couples back into the hydrostatic pressure
contribution to the momentum balance flux. Other advantages will become obvious
later in the paper.

In order to evaluate the first moment of the vertical profile, we notice that the modes
corresponding to n > 0 are all decaying exponentially with decay rates proportional
to n?, that is rapidly increasing. For a system close to equilibrium it is therefore
reasonable to keep only the first mode. This reduction to the normal manifold
approach is standard in dynamical systems theory and also forms part of a rigorous
derivation of the standard shallow-water equations. The solution with just the first
mode is

1 H
hy (1) = =0 /O ya(y, Hdy,  (2.29)

w(t,0) = Cre > + Ce/* + a1e ™17 sin <Z§> . (2.30)
H
Inverting the Cole-Hopf transform gives an expression for «,
y=2-224, (0.0 + 4@ sin ()] @.31)
o(l,y) = - — ——10 B sin | — s .
VI T vy 2Ll : H
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in which A; (1) = aje ™" = aje ™', where p, = (x> D/H?) + (V2/4D). We get

0= / ( _ 7Elc)g [wé(y) A () sin (’;)] dy) (2.32)

Now A, (r) satisfies the differential equation

W A (2.33)
dr M1Ag. .
Using (2.32) we can regard &, as an invertible function of A;. Therefore we have
dh, dn, dA1
— A (h, 2.34
a A, ar oAl )dAl (239

Thus if we can invert (2.32) and calculate the integral defining dh,/dA; we know the
exact evolution equation for /,. This cannot be done in terms of simple functions;
however it could be straightforwardly implemented in a numerical code. We will
pursue an analytic approach in this paper by expanding /, about its equilibrium
value A% = (1/H,) fOH ya® (y) dy, which is given by a dilog function. Since /, = A
when A; = 0 to lowest order we get

d
o= 1 (h — hy). (2.35)
That is the evolution of the solids centre of mass £, is determined by a relaxation
towards equilibrium hl‘f) with a decay rate given by the first Fourier mode ;. The
accuracy of this equation can easily be improved by expanding (2.34) in higher
powers of hl(f) — hy,. In figure 3 the time evolution of the solution to the unsteady
sedimentation—resuspension equation is shown along with the evolution of the vertical
mass centre as a thick curve.

The diffusion in the flow is primarily due to turbulent eddies and hence scales with
both the typical eddy size H> and the local shear rate U/H, U being a characteristic
horizontal velocity. Thus we expect D o HU = DHU, in which D is a dimensionless
proportionality coefficient. This choice yields

d 1% DU 1V
—h, = — [ *=— _ hY —h). 2.36
dr'”? H(” V+4DU)(" 2 (2.36)

Written like this the primary time scale is given by H/V, the sedimentation through
the depth. If this is kept constant and DU/V allowed to vary then there is a minimum
decay rate when V/DU = 2n of u, = n(V/H).

2.6. Resuspension-dominated flow regime

When the sedimentation velocity is small compared to the bulk horizontal velocity U,
the decay rate of (2.35) can be approximated by

_U
= nzDﬁ, (2.37)

which scales linearly with a first-order approximation to the shear rate. In this flow
regime the diffusion flux forces the mixture into a well-mixed flow state, hence
h$ ~ H/2. Consequently, the mass centre &, evolves according to

H H, H , =U
h, (1) = 5 + % -3 exp | —m tDﬁ . (2.38)
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FIGURE 4. (Colour online) Large-scale data of a debris flow event in the Illgraben torrent,
Switzerland on 28 May 2005. Height, normal stress and basal fluid pressure are measured and
plotted versus time.

We speak of a resuspension-dominated regime, a flow state that may for instance be
present in the initiation phase of a multi-component geophysical mass flow. Particles
are eroded from the ground and resuspension fluxes force them into a well-mixed
suspension. The vertical mass centre is adjusted to the presence of ‘new’ particles with
a time delay accounted for by the relaxation time.

Figure 4 shows the initial 15 min period of a large natural debris flow event in
the Swiss Alps. The main flow lasted for another hour. The entire flow transported a
bulk mixture volume of around 140000 m?. The plots show measured surface height,
total normal stress and effective basal fluid pressure at one specified point in the
flow channel over time. The height data clearly indicate the arrival of the front, and
the same abrupt increase is seen in the normal stress. The basal fluid pore pressure
however, which can be understood as a measure of particles in suspension shows a
lag. The proposed model explains this lag as the time required to fully suspend the
particles eroded in the head of the flow. In the first seconds after the arrival of the
front the lower relative level of the pore pressure may of course also be due to the
fact that the flow is not fully saturated. Visual observations, however, indicate that the
unsaturated part only lasts for a couple of seconds, whereas the adjustment of the pore
pressure level is of the order of minutes. Full suspension is being indicated by the fact
that the pore pressure measurement coincides with the normal stress measurement, as
is seen in the tail of the flow.

2.7. Sedimentation-dominated regime

When the horizontal bulk velocity U is small the system will be dominated by
sedimentation and diffusion/resuspension will be small. The flow may no longer
be turbulent and the scalings of (2.36) will be invalid. The time scale should be
proportional to H/V, the sedimentation time, and we note that if this is kept constant
and V/DU varied the minimum value of the decay rate is

1%

ny = nﬁ. (2.39)

V will usually be very small such that relaxation of the vertical mass centre due to
sedimentation will happen on a much longer time scale than for the resuspension
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process. In terms of geophysical mass flows this, among other flow situations, refers
to the deposition zone in which horizontal velocities are negligible. Within a single
vertical column of the mixture the individual masses are conserved and only the solids
vertical centre of mass #, is subject to change. The equilibrium solids mass centre hl(f)
is evaluated to be

H,
hY = 2—(; (2.40)

If initially the particles are distributed uniformly throughout the height, sedimentation
is given by exponential decay towards equilibrium, hence

h, () = H, + (H - H”) e ™V (2.41)
2¢ 2 2¢
2.8. Connection to the basal fluid pressure

In recent experiments the effective basal fluid pressure of real-scale and laboratory-
scale debris flows has been measured (Iverson & Major 1999; McArdell, Bartelt &
Kowalski 2007). By effective basal fluid pressure we mean the apparent fluid pressure
measured at the base of the flow py|,_o = paul,—g + Pel,—o- It is also referred to as the
fluid pore pressure. Now from from (2.11) we have p, = Xp and on the basal surface
pP= (Qp - Qf)ngp and p, = orgyH, thus

Prly=o = 0r8yH + X,=0(0, — 0/)&H, (2.42)
H Oy—p
=gH [Qf + g” <1 - ;) (0p — Qf)] : (2.43)

We can see clearly how the solids volume fraction near the basal surface (oy—)
determines the fluid pressure. If the solids concentration is low then the particles
are entirely suspended and the fluid pressure is g, [(H — H,)or + H,0,], the weight
of all the particles and all the water. If the particles are at their maximum steady
concentration ¢ then the fluid pressure is g,Ho, corresponding to a column of pure
water. If the particles are over-compressed o > ¢ then the fluid pressure can be less
than this. This is the case initially in a flow as the grains have to dilate before they
can move and such negative pore pressures have been seen in experiments (Pailha &
Pouliquen 2008).

To calculate the fluid pressure in terms of /, it is necessary to invert (2.32) to
calculate A; and then to evaluate (2.31) at y = 0. In a numerical code this can be
done, but for illustrative purposes we again work analytically and expand about the
equilibrium state. From (2.31) we have

Ay =A(h, —hY), (244)
where
HTaD H) 1si H
A=¢/ 7D cos (my/H) 7sm(3ty/2 ) (Cle—Vy/D_CZeVy/D) ydy. (2.45)
H, Jo [VH () 2 o)
Now
1 —e VHr/¢D  mpDA,
oo =T s~ (246)
1 —e VEr/90 DA
— (s)
=¢ [ —eviier — VH (hy — h)’). (2.47)
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Note that if H, = ¢H then A =0 and «,—¢ = ¢ corresponding to a saturated collection
of particles at maximum packing. This then can be substituted into (2.42) to give the
fluid pressure on the base

pf|y:0 = Qfng + X)':O(Qp - Qf)ngp (248)

H, (e VHp/9D _ e=VHIOD D) ©

Though this expression is rather complicated, especially with the definition of A, the
physics it describes are straightforward. In equilibrium (4, — h[(f)) there is an excess
pore pressure that is governed by the volume fraction of solid particles H,/H and the
Péclet number VH/D. If the centre of mass of the particles is higher than equilibrium,
so that there is net sedimentation, then the pore pressure is increased. If the centre of
mass of the particles is lower than equilibrium, so that there is net resuspension, then
the pore pressure is reduced.

3. Depth-averaging

Depth-averaging refers to an integration along the vertical (slope-normal) y-axis. It
is an appropriate tool to reduce a problem’s dimensionality whenever the shallowness
parameter, given by the ratio of characteristic height and characteristic length, is small.
The formulation of geophysical mass flows in terms of depth-averaged models is very
common and has been rigorously derived and analysed for all kinds of one-phase
flows (see Savage & Hutter 1989, 1991; Bartelt, Salm & Gruber 1999; Wieland,
Gray & Hutter 1999; Gray 2002; Pudasaini & Hutter 2007). There also exist some
generalizations to multi-component mixtures (see Iverson 1997; Iverson & Denlinger
2001; Pitman & Le 2005). A depth-averaged formulation of the segregation model
proposed in Gray & Chugunov (2006) is given in Gray & Kokelaar (2010).

In this section we present a depth-averaged shallow flow model in which the
balance laws for mass and momentum are extended by a depth-averaged concentration
equation. This itself is not new and in a slightly different formulation has already
been proposed by Pitman & Le (2005). The innovation, however, comes from allowing
for a non-constant mixture density in the vertical direction, which translates into a
coupling of the momentum balance to the vertical centre of mass. The model is
therefore completed by an evolution equation for the vertical mass centre, derived by
depth-averaging the first moment of the concentration equation.

3.1. Depth-averaged quantities

We assume that the flow has a clearly defined free surface y = H(x, 1), also referred
to as the height of the flow. Integration of the densities p, p, and p; over the vertical
y-axis results in bulk mass per unit area m as well as the masses of the individual
components m, and my per unit area. We have

H H
mz/ pdy, m,E/ prdy, 3.1)
0 0

with i € {f,p}. For a constant mixture density p we have m = Hp in which
case H recovers the flow height commonly used as a system variable in depth-
averaged single-component theories (Savage & Hutter 1989, 1991; Bartelt et al. 1999;
Wieland et al. 1999; Gray 2002; Pudasaini & Hutter 2007). We also want to depth-
average stresses and velocities. For the integrals to be well-defined we introduce the
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density-weighted-average notation

H H
/ (9)pdy / () p; dy
0 0
= .

(V)="g—— and () =""pf—— (3.2)

H
/ p dy / pidy
0 0

We define the depth-averaged particles mass concentration ¢ = {p,/p) which relates to
bulk mass and solids mass according to m, = cm. Depth-integration of the equation of
state (2.3) yields an algebraic relation for the surface flow height

m, my ( 1 - c) m
H=H,+H=—+—=(c+ —. (3.3)
o o 5 /o

In fact, any two variables of the set {m;, m,, m, c} constitute an independent pair that
uniquely describes the varying composition of the flow. The vertical volume average
is given by H, =m,/0, and accordingly we have H;, = m;/o,. The depth-averaged
barycentric velocity is denoted by U = (u).

The essential idea of the proposed model generalization is the additional
consideration of the bulk vertical centre of mass 4 and the corresponding individual
mass centres h;, i € {f, p} as system variables. They are defined according to

h=(y), h=(y), and h,=(y), 34

and contain information about the vertical structure of the flowing body. For a
vanishing Péclet number (Pe = 0) the equilibrium profile is given by a uniform
mixture throughout the height. In that case, the mass centre of each component
coincides with the mass centre of the bulk at half the surface height. We have
h=hy=h,=H/2.

In order to see how the vertical mass centre relates to the depth-averaged masses
and volumes, we integrate volume and density constraints multiplied by Yy,

yo=ypp,+ypr and y=yax+y(l—a), (3.5)
which results in

H2
hm = h,m, + hym; and -5 = hy,H, + h;Hy. (3.6)

This makes explicit that there is only one degree of freedom in the set {A, A, h,} and
knowing one mass centre already implies the value of the other two. We will formulate
the equations in terms of the particle centre of mass £,. Solving for h then yields

o (H 1
For 6 =1 this reduces to h = H/2.

3.2. Velocity shear and particle profile
There is a coupling between vertical variation of the barycentric velocity and particle
concentration that introduces additional fluxes. Calculating the coupling explicitly
for general solid profiles like the ones derived in the previous sections results in
rather complicated expressions and needs numerical approximations. To highlight
the mechanism, however, we consider the limit of small Péclet numbers, hence a
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resuspension-dominated regime, in which a linear solid particle profile can be assumed.

We define
vt (o (2 Yy (3.8)
"= H 2)™) '

in which h, = (h,/H) — (1/2), and a longitudinal velocity profile with a linear
dependence in y given by

u(y) = U + Uy (ly{ . % _ 5ch,’,) . (3.9)

The definitions for a(y) and u(y) are consistent with the definition of m, ¢, U and h,.
Here, y is a non-dimensional measure of shear. If we choose 1/y = (1/2) + C(Sh;,, this
corresponds to a non-slip basal boundary condition. For a fully developed turbulent
current ¥ = 0 is a good choice. A more developed theory could consider a separate
evolution equation for y or an algebraic closure related to mass entrainment on the
lower surface.

The resulting fluxes in the depth-averaged setting are evaluated analytically and
demonstrate the form of the additional terms that might appear in a model.

3.3. A depth-averaged flux hierarchy

The local quantity (-), the depth-integrated quantity fOH(-) dy and the corresponding
horizontal flux fOH(-)u dy are given by the following triples:

local field depth-averaged quantity flux

H H
) / () dy / (-)udy
0 0
H

1 HU(1 — y&ch))
0 m mU
Op cm cmU (1 +y( - 80)]1;)
1 , 1H
Y0p cmh, cmh,U | 1+y 5 Schy, — gh—p
1
2 2 2 2112
ou mu mU (l—l—y (12—8chp>)
(3.10)

3.4. Depth-averaged mass conservation

Integration of the bulk mass conservation (2.2a) and the solids mass conservation
(2.14) yields

H
/ (30 + 8.(pu)) dy = — [pwly, (.11a)
0
H

H
\%
/ Gup, + .(py)) dy = = [p 1] 0, | @ — )+ Diar| . G.11D)
0 0

We assume zero mass flux at the material boundaries, such that pw and p,w evaluated
at the free surface and the bottom are zero (owl,_oy = ,opw|y=0H = 0). There is

another contribution to the right-hand side of the concentration equation (3.115), which
evaluates sedimentation and resuspension fluxes at the boundaries. This term also
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vanishes due to zero flux boundary conditions (2.19¢). Identifying m and cm and
substituting for the fluxes yields

om + 9,(mU) =0, (3.12a)
3 (cm) + d,[emU(1 + y (1 — 8c)h))] =0. (3.12b)

By expanding the derivatives and subtracting off ¢ times (3.12a) this can be written as
a transport equation for the depth-averaged concentration c:

1
d,c+ Udic + —0,[cmUy (1 — (SC)/’lI/]] =0. (3.13)
m

Bulk as well as individual masses are conserved when being advected with the depth-
averaged barycentric velocity U. Quantities such as the average particle concentration
¢ do not obey pure conservation equations but contain source terms.

Assuming that the flow is fully saturated, that is v=1 for O <y < H and v=0
elsewhere, and integration over y yields an evolution equation for the surface height:

OH + 0,[HU(1 — ydch,)] = wli = 0. (3.14)

3.5. Depth-averaged momentum balance
Now we consider the depth-integrated horizontal momentum balance

H

H
| @00 + oty ay=-towt + [ Vot ppar.  G13)
0 0

A zero mass flux at the material boundaries once again implies that the bracketed term
[puw]g vanishes. In order to close for the stress tensor o, we assume that internal
deviatoric stresses are unimportant and are only relevant at the material boundaries.
Locally the flow is in hydrostatic balance. The stress tensor then reduces to a height-
dependent scalar given by

H
3y0 =—gp = o(y) = gy/ pdy. (3.16)
y

This is a common assumption in geophysical shallow flow theory and does not differ
from other approaches (see for instance Savage & Hutter 1989, 1991; Bartelt et al.
1999; Wieland et al. 1999; Gray 2002; Pudasaini & Hutter 2007). Usually the density
is considered constant in y which allows the direct evaluation g, fVH pdy=gHp. We
will, however, allow for a variable p that may vary with height and continue with
expression (3.16). The depth-averaged stress tensor is then given by

H H H
/ 3,0 dy + [0, = g,0, / / pdy' dy + oyl,—g = gyhm + oyl (3.17)
0 o Jy

h being the vertical mass centre. The term g,hm stands for the hydrostatic pressure
contribution to the momentum flux. For a constant p we have g,hm = g, pH?/2, which
is the well-known hydrostatic pressure forcing in a single-component shallow flow
model. The term o,,|,_, accounts for the basal shear stress and has to be closed in
terms of a specific basal friction relation. In the original contribution of Savage &
Hutter (1989), a friction relation proportional to the normal stress is derived directly
from a Mohr—-Coulomb material assumption and results in dry Coulomb friction
proportional to the normal force. In realistic applications usually Coulomb friction
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is superposed by a velocity-dependent contribution (see for instance Bartelt et al. 1999;
McArdell et al. 2003; Cassar, Nicolas & Pouliquen 2005; Christen et al. 2010).

For the sake of simplicity we will also use a simple Coulomb friction relation, hence
Oy ly—o = pgym, w being the friction coefficient, though more complicated approaches
can easily be incorporated. In particular a more realistic model would include a
dependence of the shear stress on the solid fraction at the base.

There is no contribution from the free surface as we assume a no-stress condition.
Once again we identify m and substitute for the fluxes:

9(Um) + 0.[mU* (1 + y*(35 — 8°Ch))) + gyhm] = (g« — pgy)m: (3.18)

() /U* = y*(1/12 — §°c’h7) is a shape factor that accounts for the deviation of
the velocity profile (3.9) from plug flow (y = 0). More realistic power-law profiles
satisfying a no-slip condition, i.e. of the form u(y) = uuypc{l — [1 — (y/H)]?} with
g >0, imply (u?)/U* = (¢ + 1)* /(2¢ + 1). This is always greater than or equal to one
with the lower bound attained for a plug flow in the limit g = 0.
3.6. A depth-averaged sedimentation-resuspension equation

In order to track the vertical mass centre h,, we derive an evolution equation by
computing the first moment of the sedimentation-resuspension equation(2.14):

H

H
[ 10000 + 8,000 + 3,1y = [ sle,Valt - a/6) + Daaldy. G.19)
0 0

There are two dynamic processes which have to be considered: the barycentric
horizontal advection of the bulk given by the flux on the left-hand side and the
internal redistribution of solids within the fluid which acts as a source term on the
right-hand side of the equation. Applying integration by parts transforms the left-hand
side into

H

H
/ 8,v0p) + 8:(vppit) dy + [yl — / powdy. (3.20)
0 0

The boundary fluxes vanish [y,opw]g’ = 0. Identifying h, yields

1 1 H "
0,(cmh,) + 3, | cmh,U (1 +y | = —8ch), — —— =/ ppwdy.  (3.21)
2 P 6h, 0

The vertical velocity at the free surface is given in terms of the kinematic condition
le:H = 0,H + Ud,H, whereas it is zero at the bottom surface. We therefore close w
according to

w:%@H+Wﬂ) (3.22)

By substituting (3.14) we can evaluate fOH ppwdy = cmh,0,U and get

cm(d,hy, + 0c(h,U)) + 0.(cmUHy (35 — I))). (3.23)

The right-hand side of (3.19) accounts for a change in 4, due to diffusion and
resuspension and can likewise be simplified by applying integration by parts. Once
again the boundary flux vanishes and we get

" o " o
/ Y0, 0y (V(x (l — ) +D8ya> dy = —/ 0p (Va (1 — ) +D8yoz) dy. (3.24)
0 ¢ 0 ¢
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The response of vertical mass centre to sedimentation and resuspension has been
rigorously analysed in the last section. According to (2.36) we can write

H
—/0 o <Va (1 - Z) +D8ya> dy = jeiem(h® — hy). (3.25)

This yields the final evolution equation for the vertical mass centre:

em[dhy, + 8.(h,U)] + d[emUHy (35 — B)] = piem(h) — hy). (3.26)

4. An extended shallow flow model for fluid-particle mixtures

In the last section we derived a set of depth-averaged balance laws for bulk mass,
depth-averaged particle concentration, bulk momentum and vertical centre of mass.
Following several authors (Iverson & Denlinger 2001; Pitman & Le 2005; Pelanti,
Bouchut & Mangeney 2008; Iverson 2009), we started from the balance laws for mass
and momentum for both constituents, namely interstitial fluid and particles. Pitman &
Le (2005) integrated mass and momentum equations for the two species individually
and arrived at a set of two depth-averaged mass conservation equations and two
depth-averaged momentum balances. However, they found that their system became
ill-posed for high slip velocities because of an elliptic degeneracy in their flux function.
Pelanti et al. (2008) proposed a modification of the Pitman & Le model that accounts
for bulk momentum conservation. The model breakdown for high slip velocities is,
however, also observed in their model.

In order to avoid these problems we followed the small-discharge scaling argument
of Iverson (1997) and assumed the slip velocity to be small. We considered the
mixture’s barycentric velocity field and introduced relative rearrangement within the
flowing body as a phase diffusion. Instead of the ‘full’ system of two depth-averaged
momentum equations, we therefore arrive at the single depth-averaged momentum
equation (3.18) and an algebraic equation for the slip velocity. Although the model is
now restricted to cases of small slip velocities between the constituents, we will see
in the rest of this section that is has the clear advantage of being hyperbolic within
the physical domain of positive masses. Hence it is well-posed. A similar approach
has been followed previously by Gray & Kokelaar (2010) and led to a depth-integrated
segregation model.

A new aspect of our approach is the consideration of varying fluid pressure in the
direction depending on the solids concentration. In order to allow for a general vertical
stress state we had to introduce yet another unknown to the system, the hydrostatic
pressure contribution to the momentum balance. This term turns out to have a simple
interpretation and is nothing but the vertical centre of mass. A closure is formulated by
interpreting the vertical mass centre as the first density moment with respect to depth-
integration. Separating out the bulk mass equation, momentum equation and vertical
centre of mass equation and assuming the concentration to be constant, the proposed
model resembles the general structure of Iverson’s model (see for instance Iverson &
Denlinger 2001), in which depth-averaged bulk mass and momentum equations have
been supplemented by a phenomenological evolution equation for the basal (fluid) pore
pressure. A more recent publication is devoted to the derivation of the pore water
evolution equation (Iverson 2009).
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4.1. Mathematical structure and characteristic speeds

In order to analyse the mathematical structure of the proposed model, we will set
y =0 and therefore assume a shape factor corresponding to plug flow (u?)/U* = 1.
The extended fluid—solid shallow flow model (3.12a,b) and (3.18) then forms a set
of three balance laws for the depth-averaged quantities m, ¢ and U. The equations
contain the additional variable h, the vertical centre of mass. A closure is given by
the evolution of the solids vertical centre of mass (3.26) together with the algebraic
coupling (3.7). The summarized one-dimensional model then is written as

m mU 0
cm cmU 0
_ 4.1
0 mU + o mU* + g,hm (gx - ng) m |’ @b
h, h,U i (B — hy,
o (H(c,m)’ 1
h= 7 (2 —(1- 3 H,(c,m)h, | . 4.2)

The mean definitions of the variables are summarized in (3.10) and table 1. The
homogeneous part of the proposed shallow flow system (4.1) is linearized with respect
to the field variables. To avoid the explicit appearance of the algebraic relation (3.7)
between h, and h, we consider the evolution equation for the bulk centre of mass h
directly. It obeys the same general conservation property as demonstrated in (3.26),
but with a modified right-hand side. The hyperbolic properties, however, are invariant
under this substitution. We get

m m 0
PY I T 4.3)
U “Tu| o} '
h h 0
in which the matrices A and B are given by
1 0 0 O U 0 m 0
A c m 0 O B— cU mU cm 0 (4.4)
U 0 m 0] “|UP+gh 0 2mU gm '
h 0 0 m 0 0 h U
The characteristic speeds s; and their eigenvectors e; (i € {1, 2, 3, 4}) are
S12 = U+ \/ 2 gyh, 83,4 = U, (45)
m —m 0
= ‘ | ° = (4.6)
D m(vkagh) |t ST [ -mu |t T o ‘
h h 0

Within the physical domain of positive masses the corresponding vertical centre of
mass will be positive and system (4.1) has real characteristic speeds. It therefore
comprises a hyperbolic first-order system of partial differential equations. In the
case of zero masses the eigenvectors are not independent and the system is linearly
degenerate. This occurs in all shallow flow models. Note also that for a uniform
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Nomenclature

Qi
Pi

0

Component i intrinsic density
Component i density

Bulk density

; Component i velocity

Mass-averaged velocity

Volume-averaged velocity

Slip velocity

; Effective component stress

Effective bulk stress

Gravitational acceleration

Inclination angle
Momentum exchange
Viscous drag relaxation time

Maximum packing fraction

= py/0oy solids volume fraction

= 0r/0, density ratio
Bulk pressure

p. Pore pressure
pi, Hydrostatic fluid pressure

H=H,+H,
H; =m;/o;

H
m,-=/ pidy,
0
H
m=/ o dy,
0

c=m,/m
H
U=U@/um®,
0
H
n=1/m [ yoar
0

H
h; = ]/mi/ yp; dy,
h® 0

hy
123!
\%
D
h/ _ hl’ 1
PTH 2
14
€
Pe=VH/D
Di

Surface height
Component i equivalent heig

Component i depth-averaged
mass

Bulk depth-averaged mass

Particle mass fraction

Depth-averaged horizontal
velocity

Bulk centre of mass

Component i centre of mass

Bulk equilibrium

centre of mass

Component i equilibrium
centre of mass

First Fourier decay time rate
Sedimentation velocity
Phase diffusion coefficient

Solids centre of mass
deviations
Characteristic shear
Shallowness parameter
Péclet number
Component i pressure

TABLE 1. The subscript i indicates the component, p for particles and f for fluid.

ht

vertical solids profile, the centre of mass corresponds to half the surface height
(h=H/2), and the first pair of wave speeds reduces to the characteristic speeds of
the shallow water system s,, = U + /g,H.

4.2. Travelling wave solutions

We now look at a steady surge in a frame moving with constant velocity —V. In this
reference frame the equations can be written

d( U)y=0
—(mU) =0,
dx

d( U)=0
—(emU) =0,
dx

d
&Wwﬁwm=%—MML

d s
a(hpU) = _Ml(hp - ]’l;)),

4. 7a)

(4.7b)

(4.7¢)

4.7d)
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and x increases towards the tail of the avalanche. We are only considering regions
where m > 0 so that if U =0 anywhere then (4.7a) implies U = 0. This system is then
singular and we have h, = h;“) and only one differential equation

d
a(gyhm) = (gy — 1gy)m. (4.8a)

This can be solved for m if we specify ¢ or solved for c¢ if we specify m. For example,
we choose the pure material densities of fluid and solid to be o, =1 and g, =2 so that
8 =1/2 and for simplicity g, = 1. We assume that the flow is well mixed, h]g") =H/2,
and that the head is solids rich and exponentially decays towards the tail, c = e /%, To
ensure a force balance far up the slope we take

=g+ nc, (4.9)

where 7 is a dimensionless parameter that determines the increase in friction with
solids concentration. If we define r = exp(—x/L) € [0, 1] then we get the first-order
ordinary differential equation

dm
2(2—r)d— =m+4n, (4.10)
r

with solution

m=4n A -1, 4.11)
V2 —exp(—x/L)

where A is a constant of integration. For 1 <A < +/2 this solution corresponds to
finite-sized flows, since the mass is positive for x € [0, —Llog(2 — A?)]. For A > V2
the flows approach constant mass as x — oo. The basic pattern resembles the solids-
rich front shown in figure 1, where the high gradient counterbalances the increased
friction towards the front. At the front itself x = 0 the solution terminates and requires
jump conditions, which we do not discuss further. This type of solution is similar to
existing debris flow models since there is no vertical redistribution.

Next we consider finite Q so that U is always non-zero and the h, equation is no
longer trivial. In this case we can eliminate U = Q/m and (4.7a) implies ¢ = const..
We keep the same assumptions for h‘ff) and § but make an additional assumption that
there is a momentum balance so that g, = u. Equation (4.7¢) can then be integrated.
To give

G 4.12
h,, ST g (4.12)

where A is a constant related to the momentum flux. As &, must satisfy consistency
criteria it must be greater than m/8 and less than 5m/8. It is therefore convenient to
define h, = (8h, —m)/(4m), which must therefore lie between 0 and 1. We also rescale
s by A/(30+/2), define m = A and let Q = /A3 /4. Using (4.7d) we then have

~ 1 3m(l —m?) —2n

hp = E + }’7’[3 9

dm 3wl —i?) — 21
= —m .

(4.13)

— = 4.14
ds n—m ( )

The behaviour of this system is governed by the roots of the right-hand side of (4.14).
For n > 1/3 there is one negative real root so any positive solution will evolve towards
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the pole at m = n and cannot be continued. If a suitable jump condition exists such
a solution might be physically reasonable. If n < /3 there are two positive real roots:
one greater than n and one, m,, less than 5. There is then a smooth solution where
m decreases towards zero as s — —oo and increases towards m; as s — 0o. We can
obviously see from (4.13) that at this root, and indeed whenever m is constant, we
have izp = 1/2, indicating that as we move downslope the particle centre of mass
evolves toward its equilibrium value. Moving back up the slope, however, fzp decreases
towards zero at 7° ~ 41 so the solution is invalid after this. In this solution we have
balance between the momentum flux mU? and the centre of mass hm subject to the
centre of mass evolving according to sedimentation and resuspension. Such solutions
can only occur in a model that explicitly allows for this.

4.3. Homogeneous solutions

Now we consider solutions where the z-dependence can be neglected, that is a zeroth-
order shallow water model. This is a reasonable approximation for the central section
of many flows. The mass and concentration equations then imply that m and c are
constant. We consider the case of a large amount of solid material ¢ = 2/3 overlain
by water. Again we take oy =1, 0, =2, ¢ =1, g, =1 and H = 1. This mass fraction
corresponds to a volume fraction of 1/2 and H = 2m/3. The equations of motion then
reduce to two ordinary differential equations for u and h,:

du
dr
dh
d—[” = —u(h, — H/2). (4.16)
As discussed in §§2.5 and 2.8 it is possible to directly reconstruct the concentration
profile from h, and c. This can be done using Fourier modes but this can lead
to non-physical values of o that are either negative or > ¢. Instead we perform a
reconstruction in terms of the logistic function. This is always monotonic and correctly
bounded as well as being the exact steady solution. We take

1
1+ exp[A()((z/h) — (1/2)]

which gives the correct solids volume fraction of 1/2. From (2.29) we have a relation
between £, (1) and A(?):

8x — /’Lgy, (415)

a(t,z) = 4.17)

h, = % + %[dilog(l + e *?)dilog(1 4 e*?)] — %1<>g(ef‘/2 +e ). (4.18)
The solids fraction at the base, o, can then be determined by solving (4.18) for A
and substituting into (4.17). This dependence is shown in figure 5 as well as a simple
approximation o = h,/H (4h,/H — 3)? that matches the value and gradient at the end
points. The work of Boyer, Guazzelli & Pouliquen (2011) suggests that for solids
fractions less than about half-maximum the particles support only a small fraction of
the stress, but that this increases rapidly as maximum packing density is approached.
Thus we write

Yo 0, oa<1/2, 4.19)
T2 -1, a>1/2, '
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FIGURE 5. The relationship between the solids fraction at the basal surface, oy, and the
relative centre of mass h,/H with a total solids volume fraction of 1/2. The dashed line,

which is almost indistinguishable, shows the approximation «g = h,/H (4h,/H — 3)%.

so that the solids are fully suspended for o < 1/2 and that the pressure fraction
increases until they take all the pressure when o = 1. We are then left to choose
three more closures for h;f), W, and . We assume that the rate of resuspension and

sedimentation is constant so that u, = (1/4)/g,/H. For j an accurate model might
use the results from Boyer et al. (2011), but since our example is meant to merely be
illustrative rather than quantitatively accurate we use a simpler approach. We suppose
that there is a frictional component to the drag proportional to the particle pressure
wppp = pXmg, and we take w, = 0.29. We also assume a turbulent drag cpu’m/H,
where c¢p = 0.3 is a turbulent drag coefficient. The basal friction is then

w=Xu,+ cpFr?, (4.20)

where Fr = u/\/Hg,. We define the steady velocity u"® as the positive solution of
gy = g, or zero. Finally at low speeds the particles must all sediment out, hl(j) =H/4,
whereas at high speeds the system will be well-mixed, 4}’ = H/2. Therefore we take

hY = H/2 — (H/4) exp(=5Fr). (4.21)

First we consider the initiation of a debris flow on a slope just steeper than the
static angle of friction, g, = 0.3, that is initially at rest #(0) =0 and fully sedimented
h,(0) = H/4. Figure 6 shows the results. Initially the flow slowly accelerates. The
solids fraction at the base is close to 1 and basal friction is dominated by granular
friction since X is close to 1. As the velocity increases the solids equilibrium centre
of mass hz(j) increases according to (4.21), and £, also increases with a small lag. As

the solids fraction at the base decreases at around ¢ =5 the equilibrium velocity u®
rapidly increases and the flow accelerates until it reaches its steady state. The system
is now well-mixed and & = A = H/2 and X = 0. The effective friction s is still close

to g, because the flow is at u®, but it has switched from being frictional to turbulent
drag.

From this state, even if the slope gets much shallower than the static friction angle,
8x < Up8y, it will continue to flow and maintain the particles in suspension down
to around g, = 0.12. The results if the angle is reduced to g, = 0.10 are shown in
figure 7. After an initial rapid relaxation of the velocity it only decays very slowly and
is slaved to u®, which is set by the solids fraction at the base. At around ¢ = 60 solid
friction starts to become important and u rapidly drops as the the fluid supports less
of the weight of the particles. The flow then rapidly decelerates, coming to a complete
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(b)

FIGURE 6. Numerical solution of the initiation of a debris flow with g, = 0.3. (a) Greyscale
intensity shows particle volume fraction as a function of height and time. The lines show #;,
h, h, and hl(f) as functions of time. (b) Quantities on the basal surface: pore pressure py, basal
solids fraction o, particle pressure fraction X and total basal friction w. (c¢) Instantaneous
velocity u and steady velocity u®®.

stop at around ¢ = 78. The particles then continue to sediment until #, = H/4 and no
further changes occur.

This shows that the model can describe the underlying physics of the resuspension
and sedimentation processes and capture realistic physical effects such as periods
of approximate equilibrium punctuated by rapid acceleration and deceleration driven
by a switch in the dominant drag mechanism. These simple closures, used only for
illustrative purposes, and the lack of x-dependence mean that quantitative comparison
with the field data (figure 4) is not appropriate. Qualitative agreement can be seen,
however, in the deviation of the fluid pore pressure from the normal stress. Figure 8
shows the reduction in the effective basal friction as the pore pressure rises.

5. Discussion and conclusion

Starting from general mixture theory we proposed an extended shallow fluid—solid
flow model, that consists of evolution equations for depth-averaged mass, depth-
averaged particle concentration, depth-averaged bulk velocity and the vertical centre
of mass of the particles. We have discussed in detail the evolution equation for the
particle centre of mass #, and shown how it adds additional terms to the other
conservation equations. The centre of mass of the complete system is easily calculated
from h, and we show that this is the correct length scale for defining the Froude
number as it is this height that sets the wave speeds, not the surface height. The
additional consideration of h, as a system variable is the real innovation of the
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FIGURE 7. Numerical solution of the arrest of a debris flow with g, = 0.10. (a) Greyscale
intensity shows particle volume fraction as a function of height and time. The lines show Ay,
h, h, and hl(j) as functions of time. (b) Quantities on the basal surface: pore pressure py, basal

solids fraction «, particle pressure fraction X and total basal friction w. (c¢) Instantaneous
velocity u and steady velocity u®.
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FIGURE 8. The plot shows the ratio of measured shear force over normal stress and can be
interpreted as an apparent friction coefficient of the debris flow surge. In the front the friction
is non-constant indicating that there basal drag is not fully described by dry Coulomb friction.
Behind the flow head, the ratio of shear and normal force stays more or less constant.

proposed system; /, can be used to track the shifting balance between (re)suspension
and sedimentation in fluid—solid mixtures within the simplified framework of depth-
averaging. This clearly generalizes established geophysical shallow flow theories and
offers a simple way of identifying different mixture regimes, e.g. a layered flow
situation in which all particles are settled to the ground or a uniformly mixed one in
which all particles are suspended in the fluid.

The resulting system is well-posed and constitutes a direct generalization of one-
phase shallow flow theory. We have briefly demonstrated how resuspension and
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sedimentation are included in the model. We have restricted ourselves to a very
simple setting in two spatial dimensions, assumed a flat topography and neglected any
entrainment processes at the basal surface. Likewise we avoided any discussion of the
controversial question of the correct basal friction law. Considering extended shallow
flow models in realistic topography is therefore a planned next step.

In debris flows an important observable in both real-scale and laboratory
experiments is the basal fluid pore pressure. Most shallow multi-component flow
approximations for debris flows face the limitation of a fixed vertical mixture density,
which we overcome in our approach. We show how the basal pore pressure directly
depends on £, and how this can be positive or negative depending on whether particles
are sedimenting or being resuspended.

The proposed extension to the shallow flow theory can be embedded in a even
more general theory by taking additional moments of the fundamental balance laws.
A possible application of this would be an analysis of the effect of entrainment
on velocity profiles for example. The concept is also very general and not at all
restricted to the case of a binary fluid—solid mixture. A natural next step therefore
is an extension to more constituents, for example polydisperse granular flows with or
without a liquid.
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