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Continual skipping on water
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Experiments are conducted to study the planing and skipping of a rectangular paddle
on the surface of a shallow stream. The paddle is allowed to move freely up and
down by attaching it to a pivoted arm. A steady planing state, in which the lift
force from the water balances the weight on the paddle, is found to be stable for
small stream velocities but to become unstable above a certain threshold velocity
which depends upon the weight and the angle of attack. Above this threshold, the
paddle oscillates in the water and can take off into a continual bouncing, or skipping,
motion, with a well-defined amplitude and frequency. The transition is sometimes
bistable so that both a steady planing state and a regular skipping state are possible
for the same experimental parameters. Shallow-water theory is used to construct
simple models that explain the qualitative features of the planing and skipping states
in the experiments. It is found that a simple parameterisation of the lift force on the
paddle proportional to the depth of entry is not sufficient to explain the observations,
and it is concluded that the rise of water ahead of the paddle, in particular the way
this varies over time, is responsible for causing the planing state to become unstable
and for enabling a continual skipping state.
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1. Introduction
When an object impacts on a water surface, it receives an impulse that can deflect

its course and may even be sufficient to cause it to rebound from the surface. This
impulse is what allows us to skip stones at the beach, throwing a flat stone into the
water in such a way that it bounces several times before eventually sinking. If an
object is towed quickly over a water surface, on the other hand, a lift force is also
generated, allowing the object to glide, or plane, along the surface, as exploited by a
water skier.

In this paper we report experiments in which a rectangular plate, or paddle, is
suspended at an angle over a fast-flowing stream and allowed to move freely up and
down (see figure 1). The relative velocity of the stream and the paddle generates a
lift force, and we are interested in the induced vertical motion of the paddle. Our
main findings are that there are two primary dynamical states for the paddle: at low
flow speeds a steady planing state exists, in which the lift force balances the weight
of the paddle. When the stream is sufficiently fast, on the other hand, a skipping
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state arises, in which the paddle bounces continually off the water surface without
decaying. Further still, we find that the steady planing state becomes unstable, and
instead the paddle will, of its own accord, ‘take off’ from the surface, bouncing with
larger amplitude until a regular skipping state is reached. In some cases a reservoir
of water builds up ahead of the paddle and a third, sloshing, state occurs, in which
the paddle oscillates in contact with the water, and the oscillations resonate with a
seiche in the reservoir upstream.

Section 2 describes the experiments and observations in more detail. In §§ 3–5, we
then rationalise these observations, using simple fluid-mechanical models. Although
it is perhaps intuitive that an object towed sufficiently fast will start to skip rather
than plane over the surface, a simple theory to predict this is not as straightforward
as one might think.

Two-dimensional models for planing have appeared previously (Green 1935, 1936;
Wagner 1932; Ting & Keller 1974; Tuck & Dixon 1989; Sugimoto 2003). In these
existing models the flow is assumed to be sufficiently fast so that a distinct jet is
thrown well upstream without affecting the incoming flow. Such a jet is observed
in our experiments when the paddle enters the fluid during skipping. In the steady
planing state, however, we see that any such jet collapses rapidly to create a turbulent
wedge of fluid much like that preceding the bow of a ship (Payne 1994; see figure 2).

A related body of research looks at ‘water entry’ problems, which have applications
to the impact of torpedoes and bombs on the surface, and the forces on a seaplane’s
floats during landing (Wagner 1932; Mayo 1945; Johnson 1998). The main question in
this case is whether the force exerted is large enough to cause ricochet off the surface
(usually not desired, although famously put to effect by Barnes Wallis’s ‘bouncing
bomb’ during the Second World War). Mathematical models have been developed
for the hydrodynamic response in the initial stages of an impact on both shallow and
deep water (Howison, Ockendon & Wilson 1991; Korobkin 1999; Howison, Ockendon
& Oliver 2004; Korobkin & Iafrati 2005); taking account of all the details of the
water flow makes the results quite complicated, and these models do not easily extend
so far as to allow for the object to exit the water again, as is necessary to account for
skipping.

A much simpler description of the force on the entering object has been used to
describe experiments on skipping stones (Clanet, Hersen & Bocquet 2004; Rosellini
et al. 2005). In this model, which is discussed further in § 3, the lift force on the stone
is essentially proportional to its distance beneath the undisturbed water surface and
therefore provides a restoring force just like a linear spring. We find that such a model
is too simplistic to explain our observations; in the experiment we find ‘bounces’ off
the water surface that are superelastic, in the sense that the vertical velocity is larger
coming out of the water than entering it. This cannot be explained by a conservative
force, and we suggest that the missing instability mechanism is due to a ‘splash-up’
region that forms ahead of the paddle, as included in the more complex models
mentioned above. In order to produce a theory which is simple enough to predict the
trajectory of the paddle, we generalise the model used by Tuck & Dixon (1989) for
flow beneath a surf skimmer. The fact that the size of the splashed-up region ahead
of the paddle is not an instantaneous function of the paddle’s depth (as would be the
case if one simply used measured fits for the lift force on a planing object) is crucial,
and we will show that allowing for this time lag is sufficient to explain why the paddle
starts to skip continuously.
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Figure 1. A sketch of the experimental set-up, showing the notation used in the text. (a)
The paddle out of the water. The orientation of the paddle tip about the pivot, as measured
by the sensor, is described by θ . (b) The paddle resting on the ramp, when θ = θ0, and the
definition of the other constant angles: the inclination of the ramp is φ; the angle of attack
of the paddle is α; the angle between the pivot, paddle tip and ramp is β , which is related to
θ0 by θ0 + φ + β = π/2. The distance of the paddle tip from the pivot is a ≈ 350 mm. Masses
could be added to counterbalance the paddle and alter the net moment. The total mass of the
pivoted assembly is large compared with any added masses, so the moment of inertia remains
roughly the same for all experiments; I ≈ 0.01 kg m2.

2. Experiments
2.1. Experimental set-up

The experiments were conducted in a Perspex tank, 0.1 m wide and approximately
1 m long. A sloping ramp was inserted into the middle of the tank, dividing it into
two separate reservoirs, as shown in figure 1. The upper reservoir was filled up to
the level of the top of the ramp, where it overflowed and produced a shallow stream
down the ramp. The water in the reservoir at the bottom was then pumped back to
the top, resulting in a continual uniform flow down the ramp, with typical depths of
3–6 mm.

Above the ramp, a rectangular Plexiglas paddle was suspended by a long arm to a
pivot so that it could rotate freely in the plane perpendicular to the water flow. We
denote θ as the angle between the paddle tip, the pivot and the vertical (see figure 1)
and θ0 as its value when the paddle is resting on the ramp. A magnetic sensor
(POSIROT from ASM Ltd, part no. PRAS1-30-U2-CW-M12 modified to operate at
2 kHz) attached to the pivot supporting the arm, measured θ − θ0 at a sampling rate
of 5 kHz, with an accuracy better than 0.01◦. Because the pivot was positioned well
upstream of the paddle (with b � a in figure 1) and the angular excursions were small
(θ − θ0 was typically less than 2◦), the perpendicular displacement of the paddle tip
above the ramp, hT , is related to θ − θ0 by

hT = a cos(θ + φ) − a cos(θ0 + φ) ≈ a(θ − θ0) cos β + O((θ − θ0)
2), (2.1)

where φ and β are defined in figure 1 and a is the distance from pivot to paddle tip.
The angle the paddle made with the ramp (whilst resting on it) is termed the

‘angle of attack’, α, and was varied between 24◦ and 88◦. Two types of paddle were
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Figure 2. The steady planing state for the wide paddle viewed (a) from the side and
(b) from slightly behind.

used: the ‘wide’ paddle took up almost the full width of the tank with approximately
1 mm gaps on either side, whereas the ‘narrow’ paddle was half the tank width and
was positioned in the centre of the stream.

The weight of the paddle resulted in a moment about the pivot which caused it
to fall onto the water; it could, however, be counterbalanced on the other side, to a
greater or lesser extent, by adding additional masses on the arm, thereby altering the
net moment M forcing the paddle down onto the ramp. Note that some care is needed
to define the moment properly, because the rotation about the pivot of the overall
centre of mass changes the component of gravity contributing a moment: if the centre
of mass m is a distance lc from the pivot and at an angle θc from the paddle-pivot
line, the moment is mlcg sin(θ − θc). Since the paddle’s orientation varies by only a
small amount (i.e. θ − θ0 � θ0 − θc), this change is for the most part small compared
with the moment itself. For very small moments, however, the change becomes more
significant, and when the paddle is very close to being counterbalanced, the system
starts to behave like a pendulum, with the moment even changing sign as the paddle
moves back and forth about its equilibrium orientation. We therefore define M to be
the moment the paddle experiences when it is resting on the ramp. Negative moments
in the data (see, for example, figure 5) are due to the fact that the paddle’s equilibrium
position was slightly above the level of the ramp but below the water surface.

We also varied the stream velocity by changing the inclination of the ramp. The
velocity was measured by tracking particles in high-speed video footage of the flow,
with an accuracy of approximately ±0.05 m s−1; varying the ramp angle φ between
2◦ and 16◦ caused the velocity to vary between approximately 0.6 and 1.2m s−1.
Experimental runs typically involved a fixed choice of stream velocity and angle of
attack, whilst the extra mass added to the arm was treated as the main control
parameter.

Before describing the results of the experiments, it is worth estimating the
importance of various physical effects: given that U ∼ 1 m s−1 and H ∼ 5 mm, the
Reynolds, Froude and Weber numbers are estimated as

Re =
UH

νw

≈ 5000, F r =
U√
gH

≈ 5, We =
ρU 2H

σ
≈ 100, (2.2)

in which g is the gravitational acceleration, ρ is the density of water, νw is the
kinematic viscosity, and σ is the surface tension. Within the bulk of the stream,
the predominant hydrodynamic forces are therefore expected to be inertial; capillary
effects are almost certainly negligible, and gravitational effects are small over distances
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Figure 3. Sample trajectories from the experiments with a wide paddle; the grey band shows
the position of the undisturbed water surface. (a) A steady planing state, when the paddle is
dropped from just above the surface. (b) A skipping state with similar angle of attack and
moment as (a), but with much faster water velocity. (c, d ) A bistable situation with both a
steady planing state and a persistent oscillating state. (e) An irregular state, when the paddle
is very close to being counterbalanced. (f ) A sloshing state, when the angle of attack and
moment are somewhat larger.

of the order of the flow depth. This is not to say that gravity and surface tension do
not play a role: gravity is important in bringing any splashed-up water back down
into the stream, and surface tension visibly played a role in the dynamics of detached
droplets.

2.2. Observations

As described more fully below, varying the applied moment M reveals two main types
of dynamical behaviour for the paddle, planing and skipping, along with a distinctive
transition between the two; in addition, sloshing states could also be observed for the
wide paddle. Sample trajectories of the height of the paddle tip, hT , illustrating the
different types of behaviour are shown in figure 3. ‘Regime diagrams’ are presented
in figure 4 and indicate the areas on either the (M, U ) or the (M, α) parameter plane
where the various states were observed.

From time series such as those shown in figure 3 we extract the mean height of
the paddle tip, the average peak-to-trough amplitude A and the average frequency
of oscillation f (from the mean peak-to-peak time interval) to provide quantitative
measures of the dynamics. The mean paddle depth furnishes a key measurement for
the planing states, whereas A and f characterise the skipping oscillations. A typical
pattern for how the amplitude and frequency vary with moment is shown in figure 5
and clearly exposes the transition from planing at larger M to skipping at small M .
Note that the error bars in A represent the standard deviation of all the peak-to-
trough amplitudes measured in each time series; the size of these error bars therefore
characterises the regularity of the skipping oscillations.
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Figure 4. Regime diagrams for planing, skipping and sloshing. (a) Sketch of the different
regimes for the wide paddle with an angle of attack α = 36◦ and varying velocity U and
moment M . The size of each circle represents the amplitude of variations in hT , and the regime
boundaries have been further constrained by additional experimental runs with intermediate
values of the parameters for which detailed measurements were not made. (b, d ) Similar
sketches for U = 0.88 and 0.7 m s−1, respectively, with varying angles of attack α and moment
M . In (c), for the narrow paddle, the approximate transition from planing to skipping is shown
for angle of attack α = 40◦. The inset shows the dependence on the angle of attack for two
values of U .
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Figure 5. (a) Mean amplitudes (average peak-to-trough change in hT ) for varying moments
for the wide paddle, with velocity U = 1.11 m s−1 and angle of attack α =40◦. For each data
point, the error bars show the standard deviation incurred within each time series; the fact
that these are small indicates that the bounces are relatively regular. (b) Corresponding
frequency of skipping states. The error bars show the standard deviation. The dashed line
shows f =(Ma cos β/8IA)1/2 for A = 10 mm (see § 2.4).
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Figure 6. (a) Heights of the paddle tip, scaled with the water depth, during steady planing
states for the wide paddle, for varying moment, α = 36◦ and several different water velocities
as indicated. (b) Heights of the wide paddle during steady planing states (left axis, dots) and
the corresponding wetted length on the paddle (right axis, crosses) for velocity U = 1.11 m s−1

and angle of attack α = 49◦.
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Figure 7. (a) The steady planing state for the narrow paddle. (b) Heights of the paddle tip
are shown for varying moment, U =0.7 m s−1 and different angles of attack as indicated.

2.3. Planing states

When the moment is large enough, the paddle fluctuates at a low level about a steady
height, due to vagaries of the flow rate and stream depth. Lifting the paddle up and
dropping it into the stream results in damped oscillations back to the steady planing
height as seen in figure 3(a).

Figure 2 shows photographs of a sample steady planing state for the wide paddle;
there is a turbulent ‘wedge’ of water that builds up ahead of the paddle, with very
little loss of water around the sides. Somewhat surprisingly, and as illustrated in
figure 6(a), the height of the paddle tip appears to be almost the same as the
undisturbed water depth, H , and does not show any significant increase with the
moment. The greater moment must be supported by a larger force from the water,
but this does not result from deeper penetration into the stream; instead, it results
from a larger wedge being built up ahead of the paddle, as indicated by the increase
of the wetted length shown in figure 6(b).

The narrow paddle also builds up a turbulent wedge, although a significant fraction
of the water is now diverted around the sides (figure 7). Steady depths of the narrow
paddle for several different angles of attack are shown in figure 7. All the data show
a definite decreasing trend with increasing moment, in contrast to the case for the
wide paddle. At the same time, the wetted length of the paddle increases, as for the
wide paddle. At the highest moments, the flow becomes completely diverted around
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Figure 8. A trajectory of the height of the tip of the narrow paddle showing times of entry
(pluses) and exit (circles), as determined from high-speed video footage of the bounce. Example
images during the cycle show the paddle (a) near the top of its airborne trajectory, (b) shortly
after entering the water, when the jet can be seen spreading up its front, (c) as it leaves the
water, with a large jet of water still attached, and (d ) above the water surface, as the jet falls
back into the stream. The stream is seen as the relatively narrow band of grey, above a much
wider grey band which is the ramp.

the sides, and the paddle rests on the bottom of the stream, leading to the levelling
out of the data for the highest angles of attack in figure 7 (the fact that this appears
to be just above the bottom is due to an error of ±2.5 mm in measuring the origin
for hT ).

2.4. Skipping states

For smaller net moments, the paddle exhibits a constant skipping mode, characterised
by a relatively regular oscillation, an example of which is seen in figure 3(b). For very
small moments, the majority of the motion is out of the water, following a ballistic
trajectory in the air and ‘bouncing’ off the water surface very much like an elastic ball.

Skipping behaviour occurs in much the same way for both the wide and the narrow
paddle, and an example for the narrow paddle is shown in figure 8. When the paddle
enters the water a thin high-speed jet is ejected up the front, rising several centimetres.
This jet remains in contact with the paddle even until after it has been pushed back
out of the stream. By analysing video footage of the motion, both from the side and
from behind the paddle, it was possible to distinguish between the jet and the bulk of
the stream and therefore to determine the moments at which the paddle enters and
leaves the stream, as shown in figure 8. Some time later, the jet detaches from the
paddle and falls back into the stream.

It is evident from figure 8 that the paddle exits the stream at a much higher position
than at which it entered. Simultaneous video footage reveals that whilst the paddle
is entering the water, the stream builds up a wedge ahead of it (in addition to the
thin jet ejected from the top of the wedge); as the paddle is forced back up again, it
remains in contact with the water until it clears the top of the wedge. This, we believe,
is fundamental in allowing the paddle to skip continually; the build-up of the wedge
essentially means that the paddle is in contact with the water for longer on the way
out than on the way in, allowing it to be accelerated to a larger speed than that with
which it entered.

The skipping amplitude selects itself; the paddle can be dropped from any height
above the water, and the subsequent oscillations will evolve to the same average
amplitude. If the initial amplitude is smaller, successive oscillations grow, showing



Continual skipping on water 9

0.01 0.02 0.03 0.04 0.05 0.060

5

10

15

(a) (b)

M (N m) M (N m)

A
 (

m
m

)

Planing

Skipping

Bistable

0.01 0.02 0.03 0.04 0.05 0.060

5

10

15

h T
 (

m
m

)

Figure 9. (a) Mean oscillation amplitudes A for the wide paddle for varying moment, with
velocity U = 1.11 m s−1 and angle of attack α = 49◦. The dots show steady planing states; the
crosses show regular skipping states (the error bars show the standard deviation of amplitude
of oscillations). (b) Mean height of paddle above the ramp for the same experiments. The
error bars here show the range of hT .

that low-amplitude bounces off the water surface are superelastic. The mean amplitude
depends upon the moment, as is seen in figure 5, generally decreasing as M increases.
For smaller-amplitude skipping states, it is very hard to tell whether the paddle leaves
the water during the motion or not, since the water surface beneath the paddle is
severely disturbed. There do appear to be some cases, however, in which the paddle
does not leave the water surface. For large angles of attack, and for large amplitude
skips, the paddle touches the ramp at the bottom of the stream, and the bounce
arises from a combination of that impact and the force from the water. For shallower
angles, however, the paddle always remains above the bottom of the stream.

Note that the skipping frequency shows a definite decreasing trend with decreasing
moment (see figure 5b). This is largely the result of the decrease in the effective
acceleration of the paddle during its ballistic trajectory above the water (the moment
of inertia of the arrangement being largely unaffected by the weights added to the
arm). Indeed if the paddle were bouncing elastically on the ramp and following a
perfectly ballistic trajectory, the frequency would vary as f ∝ M1/2, as illustrated by
the dashed line in figure 5(b). (As seen in the next section the equation of motion in
that case is Iθ̈ = −M; the trajectories are θ − θ0 ≈ A/a cosβ − Mt2/2I, given that
an amplitude A corresponds to θ − θ0 ≈ A/a cosβ , and the time between bounces is
(8IA/Ma cos β)1/2.) The frequency data for the skipping paddle do not quite follow
this trend because the moment varies with height, and the paddle spends some time
in the water.

2.5. Transition between planing and skipping

For a fixed stream velocity and angle of attack, the skipping state typically ceases
abruptly above a threshold moment, as seen in figure 5. The paddle then rests in its
steady planing state as discussed above. It can be lifted and dropped into the stream
to try and excite it into the skipping state, but will slowly decay back to the planing
state.

This threshold for the regular skipping state does not necessarily correspond to the
loss of stability of the planing state, however. As is clear from figure 5 there can be
a range of moments for which the paddle is bistable, being able to exist in either
a regular skipping state or a steady planing state. This is also shown in figure 9,
where there is a larger range of moments for which there are two possible states. One
can select between the two states by either lifting the paddle and dropping it from
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above or placing it gently in the water. The system will very occasionally exhibit a
spontaneous transition from skipping to planing, or vice versa (because of noise); for
the most part however, the two states are very robust. Figures 3(b) and 3(c) show
time traces of the coexisting planing and oscillating states in one experiment.

There were some choices of the velocity and the angle of attack for which the
bistable regime was not detected, and there appeared to be a smoother transition
between planing and skipping (see figure 10). Generally speaking, the largest bistable
regions appeared for angles of attack in the range 40◦–70◦, and for smaller, or larger,
angles there was little or no bistability. Bistability was also much more common for
the wide paddle; in fact it was observed with the narrow paddle only at the lowest
stream velocities, and for faster velocities there was a smoother transition between
the two states. Indeed, it was much harder to identify a well-defined threshold for
skipping in these cases.

For the wide paddle, however, the threshold causes a well-defined bifurcation in
the amplitude data, such as in figures 5 and 9. Figure 10 shows amplitude data for
several different stream velocities, in an attempt to show how the threshold moment
depends upon water speed. There is no bistability evident in these cases. As one might
perhaps expect, the skipping state is possible for a larger moment (a heavier paddle)
when the stream is faster. Therefore, if one could gradually increase the flow speed,
for a fixed moment, there would be steady planing until a critical velocity is reached,
above which it would ‘take off’ and start skipping continually. The rescaling of the
data in figure 10(b) suggests that the threshold moment for instability scales with the
square of the velocity.

There was a much less clear trend in the way the onset of skipping depended on
the angle of attack or the width of the paddle. For larger flow speed, there was some
evidence that the threshold moment decreased with the angle of attack (figure 4b).
However, this was not always the case (see figures 4c and 4d ). Overall, the dependence
on the angle of attack and the paddle width seems relatively weak.
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and L, the approximate length of the reservoir. These traces are obtained from analysing video
footage. Example images of the sloshing wedge are shown in (b) and (c); these pictures are
roughly half a period apart, with the paddle tip near its lowest height in the first image and
near its highest height in the second one.

2.6. Sloshing states

For large angles of attack, α > 40◦, a separate unstable regime of sloshing was
encountered for the wide paddle, examples of which are illustrated in figures 3(f ),
11 and 12. Sloshing occurred at larger moments than skipping, when the force to
balance the moment required a large wedge-shaped reservoir to be built up in front
of the paddle. The sloshing corresponded to a regular oscillation of the paddle that
was tuned to coincide with the rocking back and forth of the water in the reservoir
(i.e. a seiche). As indicated in figures 11 and 12, two different modes of sloshing were
observed, corresponding to different flow patterns in the reservoirs (i.e. seiche modes):
in the first (termed mode 1 in figure 4 and pictured in figure 11), the motion at either
end of the reservoir is out of phase (moving up at one end and down at the other),
whilst in the second (mode 2 in figure 4 and pictured in figure 12), the ends are in
phase (moving up at both ends simultaneously).

When sloshing occurred, the steady planing state appeared to be unstable: the
‘bifurcation diagrams’ of figure 13, displaying paddle amplitude A and frequency f

against moment M , show no evidence for bistability or abrupt changes in amplitude,
except over the transition from planing to skipping at lower moment. The second pair
of these diagrams (figures 13b and 13d ) also clearly distinguishes the two different
sloshing modes, which emerge for different, but adjacent, ranges of moment. The
frequency of each sloshing mode generally decreases with increasing moment, in
contrast to the skipping states (see figure 13). This trend may be associated with a
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Figure 12. (a) Mode 2 sloshing showing a similar plot as figure 11 with the same notation.
Note that in this case the reservoir is much longer, and hL and L are in phase, contrary to the
mode 1 case in figure 11. Example images of the sloshing reservoir are shown in (b) and (c);
these pictures are roughly half a period apart, with the paddle tip near its lowest height in the
first image and near its highest height in the second one.
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Figure 13. (a) Mean amplitudes A for the wide paddle for varying moment, with
U = 0.88 m s−1 and α = 52◦, showing distinct skipping, planing and sloshing regimes. The
error bars show the standard deviation. (b) A similar plot of the amplitude of oscillations for
U = 0.88 m s−1 and α = 64◦, in which there are two separate peaks to the sloshing regimes.
(c, d ) The frequency of oscillations for the sloshing and skipping cases shown in (a) and (b).
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decrease in the natural frequency of seiche modes, since the reservoir length must
increase to balance larger moments.

3. Preliminary theoretical framework
Before building models for the planing and skipping states, we first outline some

preliminary theoretical ideas. In part we pave the way for the later models. However,
we also take this opportunity to demonstrate that overly simple models of the fluid
dynamics are not sufficient to reproduce the experimental phenomenology.

As mentioned in the Introduction, the dynamics are similar to those that occur for
a skipping stone or a surf skimmer, and previous models of those situations serve as
a useful starting point. Our experiment is of course not exactly the same, since the
paddle is constrained to move in an arc, and the presence of the channel walls and
the rectangular shape of the paddle are further obvious differences. Nevertheless, the
paddle’s motion out of the water is predominantly normal to the stream, and when
exhibiting discrete bounces the dynamics appears very similar to a skipping stone, but
with the horizontal velocity held fixed. Surf skimming (Tuck & Dixon 1989) involves
a surfboard planing on a shallow-water layer and generating lift.

3.1. Equation of motion of the paddle

Since the Reynolds number is large, viscous forces can be ignored, so we take the
force on the paddle to be entirely normal to its surface and due to the pressure of the
water in contact. The pressure has both dynamic and hydrostatic components, but
we ignore the latter, since dynamic pressures are O(Fr2) larger. This is a reasonable
approximation for many of the experiments, but is less suitable for the larger moments
when the stream depth ahead of the paddle builds up and the hydrostatic component
becomes more important.

Since the wetted length of the paddle is very small compared with the arm length
a, the normal force Fn can be treated as acting at the end of the paddle tip, and it
therefore exerts a moment Fna cos(α − β), which opposes the net moment due to the
effective weight. As discussed previously, the latter moment depends slightly upon the
angle of the arm, but we ignore this effect here and treat M as constant. The equation
of motion for the arm is therefore

Iθ̈ = Fna cos(α − β) − M, (3.1)

where I is the moment of inertia of the whole pivoted system. We use (2.1) to convert
this to an equation for the paddle tip’s displacement d below the initial water surface,
related to its height hT and the stream depth H by

d = H − hT ≈ H − a(θ − θ0) cos β. (3.2)

The equation of motion can therefore be written as

I d̈ = M − Fna cos(α − β) − νḋ, (3.3)

in which we define the constant I = I/a cos β to represent inertia. In (3.3) we have also
added an additional damping term with the simple form −νḋ , which can, in principle,
account for any air resistance to the paddle or friction in the hinge. However, fits of
solutions to (3.3) with Fn = 0 to the ballistic trajectories recorded in the experiments
(with or without water flow down the ramp) suggest that such sources of dissipation
are largely insignificant. More important is the dissipation incurred when the paddle
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enters the water because of effects such as turbulent drag. Unfortunately the form of
such a drag in (3.3) is not particularly clear and depends on the how deep the paddle
is in the water, varying in a complicated way throughout the oscillations. Instead,
we retain −νḋ as a crude parameterisation that allows us to gauge the general effect
of dissipation on the dynamics of the arm. The appropriate value of ν probably
depends upon parameters such as U and α, and therefore differs from experiment to
experiment.

3.2. Previous planing models

A number of mathematical models for the steady planing of a paddle in the absence
of gravity have been put forward in the past and provide a convenient expression for
Fn. Wagner (1932) studied the case of infinitely deep water, and Green (1935) studied
the equivalent problem on a finite depth stream; Green found that the normal force
on a paddle can be written:

Fn = cot(α/2)ρWU 2d, (3.4)

where ρ = 1000 kg m−3 is the water density, W is the paddle’s width, U is the stream
velocity, and d is the displacement of the trailing edge beneath the undisturbed surface
level. Essentially the same result, that the force depends linearly on the depth of the
trailing edge, was found by Tuck & Dixon (1989). A common feature of all of these
models is a splash jet ejected ahead of the leading edge.

Ejected jets are not, however, found in the steady planing state in our experiments
(figure 2), because gravity acts to pull the jet back down into the stream. One
might expect that there could be a steady situation in which the jet follows a
ballistic trajectory ahead of the leading edge and lands on the surface some distance
upstream, recirculating some of the incoming water. An asymptotic analysis of such
a flow geometry on infinitely deep water was considered by Ting & Keller (1974).
There was some evidence for this type of jet when the stream velocities were higher
than in the experiments reported in § 2. In those reported, however, in common with
other experiments on planing hulls (Payne 1994), the recirculating jet collapsed and
evolved into a foaming wedge such as is seen in figure 2. Thus, a normal force of the
form (3.4) seems inappropriate, and we present a more obviously relevant, if crude,
alternative in § 4.

3.3. Previous skipping models

A similar normal force to (3.4) was used with apparent success to explain skipping
stones (Bocquet 2003; Clanet et al. 2004; Rosellini et al. 2005). This normal force
depends on the relative velocity of the paddle with respect to the water, and the area
of water which it is displacing (von Kármán 1929). In our experiment the relative
velocity is U ≈ (U, −ḋ) in coordinates aligned parallel and perpendicular to the stream,
and the direction of motion of the paddle makes an angle γ = tan−1 ḋ/U with the
water surface (see figure 14a). The area being displaced in the plane perpendicular to
that velocity is Wd sin(α + γ )/ sin α = Wd(U + cotα ḋ)/(U 2 + ḋ2)1/2, assuming there
is no build-up of water ahead of the paddle. The force can then be expressed as
(Rosellini et al. 2005)

Fn = 1
2
ρW (U 2 + ḋ2)1/2(U + cotα ḋ)d. (3.5)

In the experiments the horizontal velocity U is much larger than the vertical velocity
ḋ (U ≈ 1 m s−1 and ḋ ≈ 0.1 m s−1), so we discard ḋ2 in comparison with U 2 in (3.5) to
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Figure 14. (a) Geometry of the entering paddle if the rise of water and the ejected jet ahead
of the paddle are neglected, as assumed in the derivation of the force in (3.5). The relative
velocity of the paddle and the stream is shown by the dashed arrow. (b) Geometry of the
shallow-water model for steady planing. The water rises ahead of the paddle to produce a
turbulent wedge which is in contact with the paddle in the region −l < x < 0. The sink QL

accounts for flow of water around the sides of the paddle. The wetted region in this model is
larger than that expected on the basis of the level of the undisturbed surface as seen in (a).
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Figure 15. (a) Trajectory of paddle according to the skipping stone model (3.6) of Rosellini
et al. (2005); (b) the paddle tip position; (c) the wetted length; and (d ) the normal force,
during the first bounce. The parameters are H = 4 mm, U =1.1 m s−1, α = 30◦, M = 0.03 Nm,
I = 0.03 kg m, β = 20◦, a =0.35 m and ν =0, and the initial vertical entry velocity is 50 mm s−1

(i.e. d = 0, ḋ = 50 mm s−1 at t = 0).

arrive at the equation of motion

I d̈ = M − 1
2
a cos(α − β)ρWU 2d − 1

2
a cos(α − β)ρW cotα Udḋ − νḋ. (3.6)

The last two terms are small but are important in that they add damping to a system
that would otherwise be a simple harmonic oscillator. Equation (3.6) is valid whilst
the paddle is in the water (i.e. when d > 0, in this set-up); when it is out of the water,
Fn = 0.

The nonlinear damping term indicates that skipping motion must gradually decay;
for a skipping stone, the horizontal velocity also decreases, and the stone eventually
stops skipping and sinks (assuming it is not buoyant). In the current situation of
sustained horizontal velocity, (3.6) indicates that the paddle tends to a steady planing
state. A solution to (3.6) is shown in figure 15, in which only two small skips are
produced. This model is clearly unable to explain continual skipping as observed in
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the experiments. In order to explain this there must be a destabilising process, which
is missing from the description of the force in (3.5).

4. A model for the steady planing states
High-speed video recordings of the turbulent wedge ahead of the paddle reveal a

complicated flow structure. Rather than attempt to model the details of this flow,
we instead opt for a simpler description that seeks to capture the main features of
the observed planing state and, in particular, the dependence of the steady planing
depth and wetted length upon the moment. Our model is based on the shallow-water
set-up shown in figure 14(b), which applies for shallow angles of attack when the flow
under the paddle has a small aspect ratio, and only qualitatively when paddle angles
are higher. In this geometry, the paddle tip is located at x =0, and the displacement
beneath the undisturbed water surface H is again denoted d = H − hT . The paddle’s
height is given for x < 0 by

h(x) = H − d − sx, (4.1)

where s = tan α. The wetted region of the paddle is −l < x < 0 so that x = − l denotes
the position of the top of the turbulent wedge, where the water depth is

hL =H − d + sl. (4.2)

4.1. Wide paddle

For the wide paddle almost all the water has to flow underneath the paddle, and the
situation is very close to being two-dimensional, as in figure 14. Mass conservation
then requires the flux everywhere to be constant:

hu = HU, (4.3)

where h and u are the stream depth and the velocity and H and U are their prescribed
upstream values.

Without resolving details of the flow in the wedge region just ahead of x = − l, we
know that the bottom of the stream, on the ramp, must be a streamline, and we use
Bernoulli’s principle to argue that

p + 1
2
ρu2 = 1

2
ρU 2 (4.4)

is a constant, which is determined from the flow far upstream where the pressure
is zero (at large Froude number). Since p must also be zero at the trailing edge,
this implies uT = U , and therefore hT = H ; i.e. the paddle should rest exactly at the
undisturbed water level. The pressure beneath the wetted region of the paddle is then

p =
1

2
ρU 2

(
1 − h2

T

h2

)
, (4.5)

and since h = hT − sx, the normal force is given by

Fn =

∫ 0

−l

pW dx =
1

2
ρWU 2 (hL − hT )2

shL

=
1

2
ρWU 2 sl2

hT + sl
. (4.6)

For the paddle to be in a steady position, this force must balance the moment,
M = a cos(α − β)Fn, and therefore

l2 tan α

H + l tan α
=

2M

aρWU 2 cos(α − β)
. (4.7)
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Figure 16. Steady-state depth (left axis, solid line) and horizontal wetted length l (right axis,
dashed line) for two different angles of attack α = 30◦ and α = 50◦, for (a) the wide paddle
model (4.7) and (b) the narrow paddle model (4.11) with λ = 1. The water depth is H = 4 mm,
and when the paddle tip reaches the bottom of the stream, the reaction of the ramp holds the
paddle in place.

Thus, for the wide paddle, we expect the steady depth hT to be independent of the
moment and equal to the undisturbed water depth H , but we expect the wetted length,
and therefore the size of the wedge, to increase in order to balance larger moments.
An example is shown in figure 16(a) and agrees qualitatively with the experimental
observations displayed in figure 6.

4.2. Narrow paddle

The steady planing states are qualitatively different for the narrow paddle because
much of the flow is diverted around the sides so that the situation is no longer
two-dimensional. We incorporate this situation within the same framework by adding
the flux QL diverted around the sides of the paddle. If we assume that this flux is
lost from within the turbulent wedge just ahead of x = − l, then the model above still
holds provided we modify (4.3) to

Whu = WHU − QL. (4.8)

The formulae for the pressure in (4.5) and for the force in (4.6) still apply, but with
hT = H − d , where d is related to the diverted flow by

d =
QL

WU
. (4.9)

It remains to determine QL. We expect intuitively that the amount of flow around
the sides depends upon the size of the built-up wedge; the larger the wedge, the more
the diverted flow. Thus (4.9) should relate the depth d to the wetted length l in a
monotonic way, and the force given by (4.6) is therefore an increasing function of d

or, equivalently, l.
A simple parameterisation is to take the diverted flux to be proportional to the

water speed U and the cross-sectional area of the wedge (facing out of the paper in
figure 14):

QL = λ
1

2s
(hL − H )2U, (4.10)
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Figure 17. A sketch of the paddle and free surface during a collision.

where the constant of proportionality is a further model parameter. The steady state
in this case has

l =
d1/2

(
d1/2 + µ1/2

)
tan α

,
d
(
d1/2 + µ1/2

)2(
H + µ1/2d1/2

)
tan α

=
2M

a cos(α − β)ρWU 2
, (4.11)

with µ = 2W tan α/λ, and is illustrated in figure 16(b) for the choice λ= 1. Note that
the lift force predicted by (4.6), (4.9) and (4.10) is not sufficient to support the paddle
when the moment becomes sufficiently large. Instead the paddle rests on the bottom,
and a normal reaction compensates for the unbalanced downward force. The wetted
length and hT =0 then become independent of moment, as seen for the example with
the larger angle of attack in figure 16(b). The qualitative behaviour of the theoretical
curves in figure 16(b) is similar to the experimental data of figure 7.

An alternative prescription of QL is suggested by Tuck & Dixon (1989) for flow
beneath a surfboard; they use the model of Green (1935), which includes the ejected
splash jet, and suggest that all the flow into the jet is diverted around the sides of
the surfboard. Thus QL is taken to be the water flux into the jet (calculated as in the
next section), and in this case the resulting force (4.6) turns out to be proportional to
d , exactly as in (3.4). We prefer the current formulation in view of the absence of a
jet in the experiments, although the results for l and hT are not qualitatively different
between the two versions of the model.

5. A model for the skipping states
As alluded to earlier, and shown schematically in figure 17, our explanation for the

destabilisation of the planing state and the persistence of skipping is the build-up of
the wedge of fluid ahead of the paddle so that it leaves the water higher than where it
entered. The area over which the water pressure acts is therefore not simply a function
of depth beneath the undisturbed water level but varies in a more complicated way
throughout the course of the collision. This fact was realised by Wagner (1932) in
his early work studying impact forces on sea plane floats. He noticed that the water
around the impacting float rises up to meet it so that the wetted area expands
rapidly outwards from the contact point; the region over which the water pressure
is appreciable is not simply the region beneath the undisturbed water surface, but a
larger region.

A sizeable literature has been built up extending these ideas, and the so-called
Wagner problem involves determining the short-time behaviour of the wetted region,
and the resulting force, on a vertically impacting object (Howison et al. 1991; Howison,
Ockendon & Oliver 2002; Korobkin & Iafrati 2005). A key feature that emerges is the
prediction of the splash jet from the edge of the wetted region. This is very evident
also during the skipping motion in our experiments, as is seen in figure 8. The theory
predicts that the pressure within the jet itself contributes only a small fraction of the
force on the object; the dominant force is provided by the pressure within the wetted
region.
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Figure 18. (a) Geometry of the shallow-water skipping model, with a jet of thickness hJ

ejected ahead of the paddle and a stagnation point on the paddle at x = − l. (b) Geometry
of the leading-edge region, in the frame in which it is stationary (moving at speed l̇ relative
to (a)).

5.1. Shallow-water skipping model

Accounting for the full details of the flow around the paddle is complicated, and
instead we again opt to capture some of the main ideas in a simpler description based
on another shallow-water set-up. For the skipping state, however, it is necessary to
include the ejected jet, and the new geometry is shown in figure 18. The situation
is similar to the model of Tuck & Dixon (1989), which we generalise below for the
unsteady case. Once again, the shallow setting limits the theory to small angles of
attack, unlike the experiments. Nevertheless, it is our intention to understand why
the paddle should be unstable to a skipping state at all, and we do not attempt to
reproduce the entire range of experimental results.

In the model, the water ejected into the jet is assumed to disappear; we do not
calculate its trajectory as it moves up and separates from the paddle and falls back
into the stream under gravity. This is justified on the basis of the experiments in
which, during skipping, the jet remains attached to the paddle for longer than the
paddle is in contact with the bulk of the stream – it only falls back onto the stream
once the paddle has become airborne again, and the splash that is then created is
quickly washed downstream. Thus, once the water is diverted into the jet it plays no
continuing role in the bounce dynamics.

For the geometry shown in figure 18, the depths h and hL are defined as in (4.1)
and (4.2) but now depend on time via d(t) and l(t). We take x = −l(t) to be the
instantaneous position of the stagnation point; the theory described here will make
use of the small aspect ratio (s) to reduce the dynamics of the ‘turnover region’ near
the stagnation point to a set of jump conditions.

5.2. Beneath the paddle

The flow under the paddle satisfies the shallow-water equations:

ht + (hu)x = 0, (5.1)

ρ(ut + uux) + px = 0. (5.2)

At the trailing edge x = 0, h = hT (t) = H − d(t) is determined by the displacement of
the paddle, and the pressure is atmospheric, p = 0. At the leading edge x = − l(t),
the values hL(t), uL(t) and pL(t) are related to the upstream conditions h = H , u = U
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and p = 0, by matching conditions which conserve mass and momentum across the
turnover region.

Integrating (5.1) subject to u = uL(t) at x = − l(t) and (5.2) subject to p = 0 at x = 0
gives

u(x, t) =

(
uL +

ḋ

s

)
hL

h
− ḋ

s
, (5.3)

p(x, t)

ρ
=

1

2

(
uL +

ḋ

s

)2

h2
L

(
1

h2
T

− 1

h2

)
− (h − hT ) d̈

s2

+

[
hL

s

(
u̇L +

d̈

s

)
+

(
l̇ − ḋ

s

)(
uL +

ḋ

s

)]
log

h

hT

. (5.4)

The normal force on the paddle is therefore given by

Fn(t)

ρW
=

∫ 0

−l(t)

p(x, t)

ρ
dx =

1

2

hL − hT

s

[
(hL − hT )hL

h2
T

(
uL +

ḋ

s

)2

− (hL − hT )d̈

s2

]

+

[
hL

s

(
u̇L +

d̈

s

)
+

(
l̇ − ḋ

s

)(
uL +

ḋ

s

)] (
hL

s
log

hL

hT

− hL − hT

s

)
. (5.5)

This can be used in the equation of motion for the paddle (3.3) to determine d(t);
however since hL and hT are given in terms of d and l by (3.2) and (4.2), we require
two more equations for l(t) and uL(t) in order to do this.

5.3. At the leading edge

The turnover region at the leading edge is small, which means the dynamics within this
region can be considered to be in a steady state once we move into a frame in which
the stagnation point is stationary. This can be shown using a formal expansion in the
small aspect ratio s, and figure 18(b) shows the approximate geometry in this region;
note that the assumption that s is small means that the paddle is approximately
horizontal on this scale, at height hL(t). The incoming stream has height H , and the
ejected jet has thickness hJ (t). The pressure on the left vanishes (atmospheric), whilst
that on the right matches with pL = p(−l(t), t) in (5.4).

Tuck & Dixon (1989) showed how to solve for the full details of the steady flow
in figure 18(b) using complex variable methods; for our purposes this is unnecessary,
and it is sufficient to call upon global conservation of mass and momentum across
the region:

H (U + l̇) = hL(uL + l̇) + hJ (uJ − l̇), (5.6)

ρH (U + l̇)2 − hLpL = ρhL(uL + l̇)2 − ρhJ (uJ − l̇)2. (5.7)

We also make use of Bernoulli’s principle on the streamlines along the bottom and
free surface, implying

U + l̇ = uJ − l̇, (5.8)

pL + 1
2
ρ(uL + l̇)2 = 1

2
ρ(U + l̇)2. (5.9)

Combining (5.6)–(5.9) we find

uJ = U + 2̇l, (5.10)

uL = U − 2(U + l̇)

(
1 − H 1/2

h
1/2
L

)
, (5.11)
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h
1/2
J = h

1/2
L − H 1/2, (5.12)

pL = 2ρ(U + l̇)2
H 1/2

h
1/2
L

(
1 − H 1/2

h
1/2
L

)
. (5.13)

Equation (5.11) provides the required expression for uL(t), and equating pL in (5.13)
with p(−l(t), t) in (5.4) provides the final closure condition to determine l(t).

5.4. Full equations

The complete model reduces to a set of three coupled ordinary differential equations
for d , l and uL, following from (3.3) and (5.11) and equating (5.4) and (5.13):

I d̈ = M − ρWa cos(α − β)

{
1

2

hL − hT

s

[
(hL − hT )hL

h2
T

(
uL +

ḋ

s

)2

− d̈(hL − hT )

s2

]

+

[
hL

s

(
u̇L +

d̈

s

)
+

(
l̇ − ḋ

s

)(
uL +

ḋ

s

)]

×
(

hL

s
log

hL

hT

− hL − hT

s

) }
− νḋ, (5.14)

uL = U − 2(U + l̇)

(
1 − H 1/2

h
1/2
L

)
, (5.15)
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2

(
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ḋ

s

)2 (
h2

L

h2
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− 1

)
− (hL − hT )d̈

s2
+

[
hL

s

(
u̇L +

d̈

s

)

+

(
l̇ − ḋ

s

)(
uL +

ḋ

s

)]
log

hL

hT

= 2(U + l̇)2
H 1/2

h
1/2
L

(
1 − H 1/2

h
1/2
L

)
, (5.16)

where

hT = H − d, hL = H − d + sl. (5.17)

These equations hold only when the paddle is in the water; when it is out of the
water, the equation of motion is simply

I d̈ = M − νḋ. (5.18)

The switch between (5.18) and (5.14)–(5.17) occurs when the paddle enters the water
and d switches sign from negative to positive (at which time l =0 and uL = U ). The
switch back to (5.18) occurs when the paddle leaves the water, which occurs when l

first reaches 0 (and arises when d has already become negative again).
The equations are straightforward to solve numerically, and solutions are shown

in figures 19 and 20. The system in (5.14)–(5.17) has regular singular points at the
moment of entry, when d and l are zero, so a small-time series expansion is used
to build a solution each time the paddle enters the water. The initial conditions
and parameters used in figure 19 are the same as for the solution of (3.6) shown
in figure 15, but the predicted behaviour is very different. The paddle bounces to
increasingly higher amplitudes and quickly settles into a constant-amplitude skipping
state. This saturation is due to the water ejected in the jet – as the amplitude of
bounces increases, more and more water is lost to the jet, and this provides a limiting
dissipative mechanism.
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Figure 19. (a) Trajectory of paddle according to the shallow-water model (5.14)–(5.18). (b)
The paddle tip position, (c) the wetted length and (d ) the normal force, during the first
bounce. The parameters are H = 4 mm, U = 1.1 m s−1, α = 30◦, M = 0.03 N m, I = 0.03 kgm,
β =20◦, a =0.35 m and ν =0, and the initial vertical entry velocity is 50 mm s−1 (i.e. d = 0,
ḋ = 50 mm s−1 at t = 0), as in figure 15.
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Figure 20. Sample trajectories predicted by the shallow-water skipping model (5.14)–(5.18)
for different moments M: (a) 0.1, (b) 0.05 and (c) 0.025 N m. In (a) the paddle is
released from 10 mm above the water (d = −10 mm, ḋ = 0 at t = 0), whilst (b) and (c) show
periodic oscillations. The other parameters are U = 0.8 m s−1, H = 5 mm, α = 30◦, I = 0.03 kgm,
a = 0.35 m, β =20◦, W = 96 mm and ν = 0.09 kg m s−1.

Notice that the solution for each individual bounce predicts that the paddle is
above the undisturbed water level for a significant part of the collision, just as is
suggested by the data in figure 8. The maximum of the wetted length occurs after the
maximum depth of the paddle, and the force is asymmetrical, increasing quadratically
with the depth of the paddle on entry, rather than linearly as would be predicted
by (3.5).

Sample trajectories produced by the model are shown in figure 20 and can be
compared with those from the experiment shown in figure 3. The general pattern of
skipping motion (see figure 21) is the same as that found in the experiments; larger-
amplitude, lower-frequency skipping occurs at lower moments, and as the moment is
increased the amount of time spent in the water increases.
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Figure 21. Bifurcation diagram showing the (a) amplitude and (b) frequency of skipping
oscillations predicted by the shallow-water model (5.14)–(5.18), together with some
experimental data shown by the dots. The solid line shows the theory with a crude estimate for
the damping of ν = 0.2 kg m s−1, and the dashed line shows the case with no damping ν = 0. The
other parameters are α = 24◦, I = 0.03 kgm, a = 0.35 m, β = 20◦, W = 96 mm, U = 0.88 m s−1

and H = 4 mm.

For large enough moments the regular skipping state ceases to exist, and any initial
oscillations decay to the steady surfing solution of Tuck & Dixon (1989), in which

l = 2d1/2(H 1/2 + d1/2) cot α, Fn = 2ρWU 2d cotα, (5.19)

and therefore

d =
M tan α

2aρWU 2 cos(α − β)
. (5.20)

Notice that this steady force is the same (for small α) as in (3.4); it varies linearly with
the entry depth d , as is also approximately the case in (3.5) (although the multiplying
constant there is slightly different). As discussed in the previous section, this steady
state is hard to relate to the observed planing states because the jet collapses into the
turbulent wedge. Nevertheless, in this model the onset of skipping corresponds to a
loss of stability of this steady state, which we therefore study below.

5.5. Instability

A linear stability analysis of (5.14)–(5.17) shows that the steady state (5.20) is unstable
for moments M less than a critical moment Mc, which depends upon the parameters
α and U . The predicted region of instability is shown in figures 22(a)–22(c), and
bifurcation diagrams for varying moment are shown in figure 21. The qualitative
picture is in many ways similar to what was observed in the experiments. In particular,
the threshold moment for instability increases with the velocity and decreases for
large paddle angles, as appears to be the case in figure 4. The predicted amplitudes
of skipping are also similar to the observed data included in the figure.

If we ignore the friction term, the threshold for skipping can be conveniently
described using the two dimensionless parameters

Γ =
tan α

a cos(α − β)ρWH

M

U 2
, ∆ =

tan2 α I
a2 cos β cos(α − β)ρWH 2

, (5.21)

as shown in figure 22(d ). For fixed α, it follows immediately that the threshold
moment should scale with U 2 as seen in figure 22(a) and as also appears to be the
case for the experimental data in figure 10.

The bifurcation in this skipping model disagrees with the experimental findings in
two noticeable respects: the predicted critical moment is somewhat larger than was
found in the experiments, and the bifurcation is always supercritical, with no evidence
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Figure 22. Linear instability region of the steady surfing state of (5.14)–(5.18) with no friction
ν = 0, with (a) fixed angle of attack α = 36◦ and varying moment M and velocity U ; (b) varying
angle of attack and moment, with fixed velocity U = 1 m s−1; and (c) varying angle of attack
and velocity, with fixed moment M =0.1 N m. (d ) The instability region in terms of the two
dimensionless parameters (5.21).

of an intermediate bistable regime. These discrepancies are most likely due to the
unphysical nature of this model’s steady state, in that it involves the splash jet being
constantly ejected ahead of the paddle. The recirculating water could be accounted
for in the model by assuming that the jet falls back onto the incoming stream and
that the water in it simply adds to the stream’s depth, by the amount hJ given by
(5.12), without changing its speed. Replacing the incoming depth H in the model by
H +hJ , a little algebra recovers the steady planing state of § 4 with hT = H (i.e. d = 0),
and Fn given in terms of l by (4.6). Thus the two models are not entirely inconsistent.
However, to predict correctly the unstable transition from planing to skipping would
require including gravity fully in the unsteady skipping model (5.14)–(5.18).

6. Conclusions
We have performed a series of experiments studying the dynamics of an inclined

paddle suspended above a shallow stream and have found distinct regimes of steady
planing, continual skipping and sloshing. When the paddle is following ballistic
trajectories interrupted by bounces on the water surface, the system is equivalent to
that of a skimming stone constrained to move with constant horizontal velocity.

The planing state involves a turbulent foaming wedge of water built up ahead of
the paddle, and the size of this wedge increases as the moment (effective weight) of
the paddle is increased. The properties of the steady states can be understood using
the simple shallow-water description in § 4, provided that one accounts for any flow
that may be diverted around the sides of the paddle.

When the moment is reduced sufficiently, or the stream velocity is increased, there
is a bifurcation from the planing state to a regular skipping state, with a well-defined
amplitude and frequency. For large angles of attack, this bifurcation is subcritical, and
there is sometimes a large bistable region of parameter space in which the paddle can
either skip continuously or plane at a steady depth. A second shallow-water model,
in which we allow for a jet to be ejected from the splash-up region ahead of the
paddle, was proposed to explain the skipping state. Importantly, the wetted length
of the paddle is not simply a function of the paddle position but varies in a more
complicated way throughout the course of the collision time. This can be thought of
as a nonlinear deformation of the surface that converts horizontal kinetic energy of
the water into vertical motion of the paddle, resulting in a superelastic bounce.
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However, the model gives only qualitative agreement with the experiments, and
the quantitative comparison is poor. Partly, this is because the major assumption
of the model, that the angle of attack is small, is not true for our experiments.
The experiments were not performed for very low angles of attack to afford a
better comparison with the theory because of some geometrical limitations of the
experimental set-up, and even at the lowest angle used (24◦) there are significant
discrepancies. An improved model for large angles of attack is even more difficult to
formulate in view of the complicated geometry of the flow in the jet. We nevertheless
have found that the results of the shallow-water model are qualitatively comparable
to what is observed experimentally and therefore have some confidence that the
underlying physics is similar.

A further theoretical issue is that our two models, one of the planing state and
one for the skipping state, do not overlap. In the planing state the water that moves
up the paddle recirculates in a turbulent wedge upstream. In the skipping model the
water is thrown up into the jet and re-enters the water surface only after the paddle
has bounced. A model that can contain these two cases and thus smoothly model
the increasing amplitude of oscillations from the planing state is substantially more
difficult to construct.

We suggest that future experimental work might concentrate on a more careful and
detailed exploration of parameter space; in particular it would be interesting to look
at shallower angles of attack, to see if there is a more systematic dependence on this
parameter than was uncovered here. It would also be worthwhile to investigate differ-
ent paddle shapes: circular disks more like a skipping stone, triangular wedges similar
to a speed boat’s hull and barrel shapes like the bouncing bomb. Is continual skipping
also possible for such shapes? And are certain shapes more unstable than others?

One might also wonder how much the results are affected by the shallowness of
the stream and whether the same behaviour would be found on a much deeper flow.
Preliminary experiments were in fact carried out on deeper water, by suspending
the paddle above a large rotating tank (Hewitt 2008). Similar continual skipping
behaviour was found then, but the set-up was abandoned because of difficulties
eliminating the wake of previous bounces. In any event, our explanation for why
skipping can continue indefinitely surrounds the rise of water ahead of the entering
paddle. The shallowness of the stream is therefore not fundamental; even though in
deep water the splash-up region will tend to be smaller than in shallow water, it is
still there, and we therefore expect the same instability to allow continual skipping.

For the wide paddle, when the applied moment was sufficient to dam an extensive
pool of water upstream, the steady planing state was also unstable to sloshing modes,
resulting from a resonance between oscillations of the paddle and seiche modes in
that reservoir. This phenomenon can be studied in the much simpler geometry of a
flat tank (Scolan 2009); a separate paper provides a much fuller discussion (Hewitt,
Scolan & Balmforth 2010) and draws an analogy with the mechanism generating
musical sounds in woodwind instruments like the clarinet.

This work was initiated at the 2008 Geophysical Fluid Dynamics summer program,
Woods Hole Oceanographic Institution, which is supported by the National Science
Foundation and the Office of Naval Research. We thank the participants for many
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Advanced Research Fellowship from the Engineering and Physical Sciences Research
Council.
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