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Abstract. Velocities inside avalanches have been calculated for many years by calculating the cross-
correlation between opto-electronic sensors using a method pioneered by Nishimura et al. (1987) and Dent
et al. (1998). Their approach has been widely adopted but there has been little discussion of the optimal
design of such instruments and the best analysis techniques. This paper discuses some of the different
sources of error that arise and how these can be mitigated. A statistical framework that describes such
instruments is developed and used to quantify the errors.
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1. Introduction

Opto-electronic sensors have been used for a long time to measure the velocities inside
granular flows. Some of the earliest work was done by Nishimura et al. on snow avalanches
and continued in Nishimura et al. (1987). Early work was also done by Dent et al. and
measurements were taken from the “Revolving Door” avalanche path near Bridger Bowl,
Montana.

The basic design of these sensors is simple. An infrared LED emits light that is reflected
by the passing granular material and this is detected by an infrared-sensitive photo-
transistor, amplified, digitised and stored on a computer. By comparing the signals from
nearby sensors its is possible to calculate the velocity of the flow.

In theory it is possible to calculate many other pieces of information about the flow since
the magnitude of the back scattered light depends on the density, type, size, and orientation
of the snow crystals. However, though Dent et al. (1998) tried to relate reflectivity to snow
density they failed because crystal size and type are much more important than density.
Some gross aspects of the flow can be determined however. For example in deposited snow
the signal will be constant, in a powder cloud the signal will be very low since no light
from above can reach the sensor and the density is usually too low to significantly reflect
light, and above the snow a high level will be detected due to ambient lighting.

Despite the wide spread use of opto-electronic sensors there appears to have been little
work done on analysing the errors and designing instruments so as to minimise them. In
this paper we describe how to calculate the errors for these sensors. We then use these
results to discuss how these sensors should best be designed. Some of the different variables
considered are the number of sensors, sensor geometry, relative position, size and sample
rate. Before we can calculate the errors it is necessary to first discuss how the data is to be
processed and for this to be done a model for the behaviour of the flow field is necessary.

For convenience in this paper we ignore discretization errors in both time and space and
regard functions as continuous. Only when considering the numerical implementation will
a discrete time approach be used. This simplification can be made as long as the signals
are properly filtered before digitisation so that there are no frequencies higher than the
Nyquist frequency (half the sample frequency).
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Figure 1. Schematic of a typical instrument and measurement process for a single particle. Estimated
velocity is L/τ .

We start of by discussing the most frequently used method, the cross-correlation method,
and explain why this method can be unreliable. Then we introduce a modified method
and discuss the errors for a simple two point sensor. This shows that there are several
main sources of errors. The most serious is due to the two-dimensional nature of real flow
fields past a flat sensor, whereas the analysis assumes one-dimensional flow. This can be
reduced by careful designing of the sensors or explicitly accounting for two-dimensional
velocities. The second source of error is due to accelerations in the velocity. The correlation
method assumes that the velocity is constant over the time window used for calculating
the cross-correlation and when this is not true, because the flow is accelerating, errors are
introduced. The acceleration errors can be reduced by improved analysis techniques where
the velocity is calculated as a changing function at all times. Note that the acceleration can
be caused by convective changes in velocity, that is different parts of the flow are moving
with different velocities, or temporal acceleration, that is the velocity field is changing
with time. Thirdly there are errors due to the inherent statistical velocity fluctuations in a
granular flow. The mean velocity in a granular medium is only defined once an averaging
process over individual particles has been specified. Measurements of the mean velocity
based on averaging region of space or time will have statistical uncertainty. There are also
errors introduced by the aperture effect, which will be explained later in greater depth.
Internal changes in the flowing snow will also cause inaccurate correlations. And in a similar
vein velocities normal to the mounting plane of the sensor will also introduce errors in the
correlation. Since sensors are normally mounted on large walls and the normal velocity
must vanish at the surface this effect will be very small unless the sensor is sensitive to a
few particle diameters into the flow.

2. Errors in interpreting the lag
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Figure 2. Particle trajectory with maximum correlation occurring at point of closest approach
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Figure 3. The dependence of τ on the particle trajectory can also be calculated geometrically. In the case
when acceleration, a, can be ignored then two applications of Pythagoras’ theorem give τ 2v2 + d2 = L2

and τ 2v2

y + (L − τvx)2 = d2. Eliminating d2 between the two equations gives L/τ = vx + v2

y/vx.

We assume that the largest cross-correlation between two sensors will occur at a time
when a region of the flow which passed over the first sensor is at its closest to the second.
This is discussed in more detail in McElwaine (2003) and shown to be true in the mean.
This region of the flow does not have to be a particular particle, but only a region with an
identifiable reflectivity signature, but for simplicity we will talk about a particle. Figure 2
shows the trajectory of this particle that is over sensor A at time 0 so that x(0) = xA and
is closest to sensor B at time τ . Disregarding internal changes in the material and false
matches the correlation between sensors A and B will be greatest at lag τ . The point of
closest approach of the trajectory to sensor B occurs when the displacement between them
is perpendicular to the tangent of the trajectory, which is of course the velocity. Thus

[x(τ) − xB ] · v(τ) = 0 (1)

The same equation results algebraically by differentiating to find the minimum of the
distance |x(τ) − xB |. We then define the effective particle acceleration a by

x(t) = xA + tv(τ) + t2a(t)/2 (2)

That is a(t)t2/2 is the difference in position between the actual position at time t and the
position if the particle had moved with constant velocity v(τ) (see fig. 3.) Taking the dot
product of eq. 2 with v(τ) and evaluating at t = τ this becomes

x · v − xA · v = v2τ + τ2a · v/2 (3)

where x and a are evaluated at t = τ . Then use eq. 1 to eliminate x · v and we have

(xB − xA) · v = v2τ + τ2a · v/2 (4)

If we take the sensors to be separated by a distance L along the x axis then this becomes
Lvx = τv2

x + τv2
y + τ2(axvx + ayvy)/2 which can be rearranged to give

vx =
L

τ
− vy

vy + τay/2

vx
− τax/2 (5)

Thus if the particle is travelling with constant velocity v along the x-axis sensors so that
ay, vy and vx are all zero then vx = L/τ , which is the usual formula. In other cases
however the velocity estimate v̂x = L/τ will be in error by vy(vy + τay/2)/vx − τax/2.
For low accelerations the main contribution will be from the velocity component vy which
biases the estimate high by v2

y/vx.
Equation 5 concerns point velocities at time τ and has a displacement error term a

which is similar to the averaged particle acceleration. Another approach is to attempt to
calculate the particles average velocity over the time interval τ so we define

v =
x(τ) − x(0)

τ
. (6)
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Figure 4. Different orientations of a particle with the same velocity give rise to different correlation times.
In (a.) the particle is moving orthogonally to its edge and the correlation time will be positive. In (b.) the
particle is rotated anti-clockwise and the correlation time will be negative. In (c.) the particle is rotated
clockwise giving a larger positive correlation time.

But now the point velocity v(τ) is not known and this must be approximated by defining
a new pseudo-acceleration a′ by

v(τ) = v + τa′ (7)

Substituting this relation into eq. 1 and rearranging gives

vx =
L

τ
− vy

vy + τa′y
vx

+ a′x

(

τ − L

vx

)

(8)

This is very similar to eq. 5. The significant difference is that the estimate of velocity is

accurate to first order in a′

x since a′x

(

τ − L
vx

)

= O

(

a′

x
2L2

v3
x

)

. This is not surprising and

shows the output from these instruments will best be regarded approximations to velocity
averaged over the lag time rather than point velocities.

3. Errors in Calculating the Lag

The analysis in the previous section assumed that the lag with the maximum cross-
correlation occurred when the same part of the flow was identified as it passed near each
sensor. This is only true on average and is not the case in general. There are two main
effects to be considered, which are discussed in the following subsections.

3.1. Aperture Effect

v
1

v
2

v
3

Figure 5. All three velocities v1, v2 and v3 will result in the same lags between the sensors. No sensor
array can distinguish between them and only the velocity component perpendicular to the edge can be
measured.
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Figure 6. How the lag time τ depends on the direction of the velocity φ, the speed v and the direction of
the edge normal θ. L cos θ = τv cos(θ − φ)

Each photo-transistor measures the reflected intensity of the material, thus regions
in the flow with the same reflectivity cannot be distinguished. Rather than seeing the
correlation between different points in the flow the sensors in fact measure the correlation
between contours of equal reflectivity. These contours of equal reflectivity correspond to
the edges of particles. Therefore only the velocity component orthogonal to the reflectivity
contours can be measured (see fig. 5). This difficulty is known as the aperture effect Jähne
(1997) (Chapter 13).

In the case of only two sensors the problem is even worse since the normal direction n̂

can not be calculated. A simple calculation shows this effect explicitly (see fig. 6) so that

v̂x =
L

τ
=

v cos(θ − φ)

cos θ
=

v · n̂
x̂ · n̂ ,= vx + vy tan θ (9)

where x̂ is the unit vector along the x-axis. This shows that vertical velocities can increase
or decrease the estimate v̂x depending on the angle of the edge. This effect is shown
in fig. 4 where the same particle approaches the sensor with same velocity but different
orientations.

This subsection has discussed the relationship between the lag τ the velocity of the flow
and its structure when the lag is calculated from individual events. Different approaches
for calculating the lag will be discussed later, but these all calculate the lag by comparing
the signal over large time intervals which therefore average over the different orientations
and velocities in the flow and thus act to mitigate these effects.

3.2. Spatial Aliasing

If there are spatial variations less than the spacing between the sensors then the Nyquist
limit is violated and aliasing can occur. The surface area of the sensors acts as an averaging,
low-pass filter so it is not the distance between the centres of the sensors that must be
small but the distance between the edges of the active part of the sensors. The requirement
can be simply stated that there should be no room for particles to pass between the sensors
without giving a signal. The most obvious effect of this will be when there are significant
vertical velocities, and then there maybe no correlation between the sensors at all. This is
shown in fig. 7. In this case the critical length between which there are no correlations Lc

is the sum of the particle diameter and sensor diameter. This problem is an example of
spatial aliasing. If there are wavelengths in the signal smaller than the sampling wavelength
errors occur. To combat this problem the diameter of the sensors must be increased, which
corresponds to low-pass filtering, or the sensors must be moved closer together, which
corresponds to decreasing the sampling wavelength. If the particle diameter is Lc, the
separation of the sensors L and the diameter of the sensors Ls the Nyquist criterion for
non-aliased sampling is roughly Ls +Lc ≥ L. If it is known that the vertical velocities will
be much less than horizontal velocities this criterion can be relaxed to Ls+Lc ≥ L|vx|/|vy |.
This condition of small vertical velocities will be discussed in the next section.
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Figure 7. Vertical motion can give rise to spatial aliasing. There will only be correlations between the
sensor elements if L sin θ < d.

4. Analysis Methods

4.1. Cross-correlation

This is the approach that has been used by most authors including Dent et al. (1998) and
Tiefenbacher and Kern (2003). The cross-correlation of two sequences {xi} and {yi} at lag
j is defined as

ρ(j) =

∑

i∈A(xi − x)(yi+j − yj)
√

∑

i∈A(xi − x)2
∑

i∈A(yi+j − yj)
2

(10)

The sums are taken over a time interval A of width n samples, for example k−n/2 . . . k +
n/2. x and y are the window averages. Sometimes it is not always clear exactly how these
have been defined but for consistency this should be x = 1/n

∑

i xi and yj = 1/n
∑

i yi+j.
Other variants that are symmetrical between x and y are possible. The velocity is then
calculated by finding the value of j that maximises ρ(j), and then the velocity is estimated
using v̂x = Lνs/j, where νs is the sampling frequency and L the distance between the
sensors. The velocity is usually thought of as being the velocity calculated at time kνs but
a more accurate approximation would be to take it as the velocity at time νs(k + j/2). In
either case this suggests that the velocity can only be calculated as lying in intervals of
width Lνs and that this is a fundamental design restriction. This is not the case since ρ(j)
can be approximated at any value of j using interpolation to gain additional precision.

A strength of this method is that it is invariant to shifts and scaling of the signal and it
is straightforward. That is the same lag will be found for ax+ b and cy +d for all non-zero
constants a, b, c and d. This is useful if each combined sensor and amplifier system has
different gains and offsets, since this method will automatically account for this. However
the time length of any experiment is usually no more than a few minutes and over this
period the electronics should be stable and show little drift. This means that the offset
and gain can be chosen once for the whole sequence and should be accurate. Even if this
is not possible, it would be better first to perform a filtering and transformation step, to
normalise the data, and then to calculate the correlation. This will only fail if one of the
sensors changes in some way as the avalanches passes, for example if some snow sticks
to the front of one sensor, but not the other. This effect can easily be checked for by
comparing the signal level before and after the avalanche.

Subtracting the mean from each signal before calculating the cross-correlation is similar
to applying a high-pass filter and throws away an important part of the signal: its absolute
value. It is easy to conduct examples where this method will perform badly. This is shown
in fig. 8. The signals are identical triangular waves with a lag of 0.1 s with a very small
amount (standard deviation 1 × 10−3) of zero mean Gaussian noise. A window width of
0.3 s was used, corresponding to 1000 samples. Smaller window widths give even worse
results. The search range was restricted to ±1.5 s. Larger search ranges give larger errors.
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The errors can be eliminated by choosing a window width that is greater than the period
(1 s). What this figure shows is that provided the window includes a turning point from
each signal, the correct lag is calculated, and the error increases smoothly with the noise.
In this example the noise is so small the error is not visible. The correlation function
calculated for the time a is shown in the lower left figure and shows a well defined peak at
the correct lag. The middle lower figure shows the correlation function at time b. In this
case the two peaks are only just contained at the edge of the window and the maximum
is much less distinct. The lower right figure shows the correlation function calculated at
time c. Now the two peaks are not in the window. Where neither peak is in the window
the two functions match almost perfectly so the correlation function is almost 1. For large
lags there is one turning point included and the correlation falls off. The reason for this
behaviour is obvious. By subtracting of the mean and normalising by the mean squared
deviation any two straight lines are brought into a perfect match. This means that this
method is only sensitive to changes in the curvature (second derivative) of the signal.
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Figure 8. Failure of cross-correlation approach. The upper graph shows two nearly identical signals with
a 0.1 s lag. The middle graph shows the calculated lag using maximum cross-correlation. The lower three
figures show the cross-correlation function at the three points a, b and c marked in the upper figure.
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4.2. Modelling the Signal

To perform any kind of analysis, the first step is understanding what we measure. Since
sensors are generally fixed on approximately flat plates which are impermeable to the flow
the local velocity normal to the sensor will be zero. So that to a good approximation the
flows can be treated as two dimensional. Since little is known about the reflectivity of snow
or other granular materials, we make no assumptions about the reflectivity field. Instead
we assume a general function f(x, t), which depends on space and time, that specifies the
signal that would be output from the sensor if it were positioned in the flow at position
x = (x, y) at time t. This value will be a combination of the reflectivity of the snow
smoothed over some volume in space according to the sensor’s size, the amplification,
the temporal smoothing, the digitising and finally the normalisation. This signal is then
advected according the flow velocity while changing only slowly due to three-dimensional
effects and physical processes between the grains. f satisfies the advection equation

∂f

∂t
+ v · ∇f ≈ 0. (11)

Eq. 11 is the starting point for any analysis. In this paper we will not consider spatial
variation in the velocity field v(x, t). These can be included but considerably complicate
the analysis without introducing any new features. Given this assumption, eq. 11 is easily
solved. The characteristics of this equation are the trajectories of particles and since the
velocity does not depend on position there is only one trajectory

xt(t) =

∫ t

0
v(s)ds. (12)

And then
f(x + xt(t), t) = f(x, 0), (13)

or
f(x, t) = f(x− xt(t), 0). (14)

This means that a sensor at position xi will output a signal

fi(t) = f(xi, t) = f(xi − x(t), 0) = f(xi − x(t)), (15)

where f is evaluated at t = 0 when no time argument is given.
Since the fi are normalised to have mean zero, we can assume that the mean of f is

zero and define the auto-correlation function as

c(x) = E[f(x + y, t)f(y, t)] =
1

A

∫ ∫

A
f(x + y, t)f(y, t)dy =

1

T

∫ T

0
f(x + y, t)f(y, t)dt

(16)
The auto-correlation function can be defined as an average over different fields f realised
in different experiments, or as an average over space at one point in time, or as an average
over time for two fixed points. If we assume ergodicity, stationarity and homogeneity these
will be equivalent. These conditions will not be exactly true, but one can hope that they
will be approximately true and check the accuracy later. The success of the method does
not rely on them holding, but they are useful simplifying assumptions for the analysis.
We also assume isotropy so that c(x) is a function only of |x|. These rather technical
assumptions considerably simplify the analysis and are natural. If more data becomes
available they can be tested. Different degrees of variation in downslope and slope-normal
directions can easily be incorporated by scaling the coordinates.

Since a drawback of the cross-correlation method in section 4.1 was that it was invariant
under independent transformations of the functions, we consider a new method that is only
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invariant when both signals are transformed identically. This means that variations in mean
levels and gradients will give a signal. We work in the continuous domain for convenience
but it is straightforward to convert to the discrete domain using Fourier series.

4.3. Minimum Squared Discrepancy

A general approach to constructing analysis methods would attempt to have some of the
properties of maximum likelihood estimation, that is minimising residuals. In this paper
we will only consider two element sensors but the method can be generalised. Then for
two sensors separated by a distance L we would expect f1(t + τ/2) − f2(t − τ/2) to be
small when τ = L/vx. Thus we consider the method that minimises

e(τ) =

∫

[f1(t + τ/2) − f2(t − τ/2)]2w(t)dt, (17)

where w(t) is a weight function. Note that this is symmetric with respect to f1 and f2.
If the integrand were unsymmetric with only one of the functions lagged, for example
f1(t) − f2(t − τ), it can be shown that there are extra errors introduced that can be
significant. The weight function w(t) determines not only the width of the region over
which the data is used but also its relative importance.

We will consider only gradual variations in the velocity, so we write

xt(t) = vt + at2/2 (18)

where v is the velocity at t = 0 and a the acceleration. Using eq. 15

fi(t) = f(xi − vt − at2/2). (19)

Combining this with eq. 16 gives

E[{f1(t + τ/2) − f2(t − τ/2)}2] = 2c(0) − 2c(d(t, τ)), (20)

where

d(t, τ) = |x1 − x2 − v(t + τ/2) + v(t − τ/2) − a(t + τ/2)2/2 + a(t − τ/2)2/2|
= |x1 − x2 − vτ − atτ |. (21)

Therefore using eq. 16

E[e(τ)] =

∫

E[{f1(t + τ/2) − f2(t − τ/2)}2]w(t) dt

=

∫

[c(0) − c(d(t, τ))]w(t) dt. (22)

It is clear that this will be approximately minimised by choosing τ so as to minimise d(t, τ),
thus justifying the earlier assumption that the maximum cross-correlation occurs at the
point of closest approach.

In order to calculate the errors and the probability of failure (see appendix A) we need
to calculate E[ė(τ)] and E[ë(τ)]. Differentiating eq. 21 with respect to τ we have

d

dτ
d(t, τ) =

d

dτ
|x1 − x2 − vτ − atτ | (23)

= −(v + ta) · (x1 − x2 − vτ − atτ)

d(t, τ)
, (24)

and

d2

dτ2
d(t, τ) =

|v + ta|2
d(t, τ)

+
[(v + ta) · (x1 − x2 − vτ − atτ)]2

d(t, τ)3
. (25)
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Thus

E[ė(τ)] = 2

∫

(v + ta) · (x1 − x2 − vτ − atτ)
ċ(d(t, τ))

d(t, τ)
w(t)dt. (26)

Now we Taylor expand in a = |a| and make the first choices about w(t). If w(t) is an even
function of t that is w(t) = w(−t) then odd powers of t in the integral disappear and

E[ė(τ)] = 2

∫

[v · (x1 − x2 − vτ)ċ(|x1 − x2 − vτ |) + O(a2)]

|x1 − x2 − vτ | w(t)dt. (27)

Terms of order a would remain here if an unsymmetric method in τ were used. Nothing
in the integral now depends upon t except for w(t) so

E[ė(τ)] ≈ 2[v · (x1 − x2 − vτ)
ċ(|x1 − x2 − vτ |)
|x1 − x2 − vτ |

∫

w(t)dt. (28)

At the minimum of e(τ), ė(τ) = 0,so we need to look for solutions of eq. 28 equal to zero.
Suppose that the sensors are a distance L apart along the x-axis then eq. 28 becomes

E[ė(τ)] ∝ [τ(v2
x + v2

y) − Lvx]
ċ
(√

(L − vxτ)2 + v2
yτ

2
)

√

(L − vxτ)2 + v2
yτ

2
. (29)

If ċ
(√

(L − vxτ)2 + v2
yτ

2
)

≈ 0 for all τ in eq. 28 this means that there are no correla-

tions between the sensors. This is the case discussed in subsection 3.2. This occurs if the
minimum value of d(0, τ) = Lvy/

√

v2
x + v2

y is so large that c(d(0, τ)) ≈ 0. When there are

no appreciable correlations between the sensors it is of course impossible to calculate the
velocity by any method. This failure can be minimised by reducing L, ensuring that the
sensors are aligned with the flow so that vy is as small as possible or by increasing the
correlation length by using sensors that average over a large spatial area.

If ċ 6= 0 then eq. 28 is zero when

τ =
v · (x1 − x2)

|v|2 + O(a2) =
vxL

v2
x + v2

y

. (30)

This means that if we estimate the x-axis velocity by v̂x = L/τ we in fact calculate

v̂x =
L

τ
= L

v2
x + v2

y

vxL
= vx +

v2
y

vx
. (31)

Thus direct maximisation of the correlation between two sensors does not measure the
velocity in the direction of the sensors but this more complicated function. If vy is small
this will be a good approximation, but in other cases the results can be severely biased
and the estimated velocity will be larger than the true velocity by v2

y/vx. The problem
is discussed in section 2 and illustrated in the left two parts of figure 4. Even though
the horizontal speeds are different in these two figures the output signals are identical.
This is the major problem with one-dimensional arrays of sensors. If there is some way of
calculating the vertical velocity vy then the bias can be eliminated by solving for vx as a
function of v̂x and vy in equation eq. 31. The obvious way to do this is to build a two-
dimensional sensor array with closely spaced vertical sensors so that vy can be separately
estimated. A simple sensor that can do this is shown in fig. 10. If it is not feasible to install
a new sensor another approach is to alter the vertical length scale by averaging vertically.
If the sensors averages over a large vertical region so that the vertical dimensions are λL
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such as in fig. 9 then the effective vertical velocity is reduced by a factor λ so that eq. 31
becomes

v̂x = vx +
v2
y

vxλ2
. (32)

Thus if the aspect ratio is 4 the error will be reduced by a factor of 16. Building a sensor
with such an aspect ratio could be achieved by using a lens, appropriate choice of sensor
and orientation, or by stacking sensors and combing their output.

Figure 9. One-dimensional array of two sensors designed to reduce bias from vertical velocities. The active
region of the sensors averages over a large vertical region to reduce bias.

4.4. Gaussian Correlation

In this section we assume that the correlation function c(x) is Gaussian and we also use
a Gaussian weight function w(t). This choice is made because the calculation are then
easy to perform and it is sufficient to demonstrate the dependence of the errors on the
design parameters and the properties of the flow. Analysis could also be performed with
correlation functions for hard disc systems or using correlation functions measured from
the data. We do not expect this would significantly change the conclusions.

We precede as in the previous section to analyse the method using the expectation of
the derivative of e(τ). We define d0(t) = d(t+τ0, t−τ0), where τ0 is the lag that minimises
the squared discrepancy. Thus

d0 =
Lvy

v
, (33)

which has a simple interpretation. d0 is the point of closest approach to sensor 2 of a point
moving with the flow that passes over sensor 1 at around time 0. Expanding in powers of
a and removing terms odd in t

E[e(τ0)] = 2W0 [c(0) − c(d0)] + O(a2), (34)

E[ė(τ0)] = O(a2), (35)

E[ë(τ0)] = −2W0v
2 ċ(d0)

d0
+ O(a2), (36)

where W0 =
∫

w(t) dt. More complicated expressions can be calculated for the variances,
V [ė(τ0)] and V [ë(τ0)], but these will not be included here. Instead we illustrate how these
results can be used by taking w(t) to be a Gaussian function of time scale T and assuming
that the correlation function c is also a Gaussian with length scale given by Lc.

w(t) =
e−

t2

2T2

2T
c(t) = C0

e
−

t2

2L2
c√

2π
(37)

This choice is made because the integrals for the expectations E[e], E[ė] and E[ë] can
all be performed exactly and the integrals for the variances V [e], V [ė] and V [ë] can be
easily approximated by expanding in powers of a. What this approximation corresponds
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12 McElwaine et. al.

to is assuming that Ta/v is small, where v = |v|. This is a natural assumption since
methods of this type will not work well if the velocity varies significantly over the window.
In the following analysis we generally work to the lowest non vanishing term. There is no
significant difference between a direct correlation method and a residual method.

The probability of failure is given by

p(fail) ≈ 3

4

1 + exp

(

L2v2
y

L2
cv2

)

√

1 + 4T 2v2/L2
c

(38)

The numerator contains a positive exponential term with argument
L2v2

y

L2
cv2 = d2

0/L
2
c . In order

for the failure probability to be small this must be of order 1. Since the exponential term
is added to 1 there is little advantage in making it very small. The term will be order one
in two situations. If the spacing of the sensors is sufficiently close that no spatial aliasing
occurs for all vx and vy (sec. 3.2) that is L ≤ Lc. Or when the angle of the velocity to
the sensor axis is sufficiently small, that is vy/v ≤ Lc/L. For most sensors built so far the
spacing is at least 5 mm which is well above the smallest correlation lengths which will
be of the order of the particle diameters around 1 mm. Thus there will be no detectable
correlations except for velocities with angle less than ≈ tan−1(1/5). However, the large
scale features of a snow avalanche may be many metres in size (Nishimura et al. (1987))
and these will be detected as a correlation between both sensors for any velocity direction.

This result is exactly what would be expected. Eq. 36 contains a factor ċ(d0) and it is
one over this that appears as the numerator in eq. 38 (since d2

0/ċ(d0)
2 ∝ exp(d2

0/L
2
c)). For

many correlation function ċ(d) = 0 for all d greater than some critical value and in that
case eq. 38 diverges and failure becomes a certainty.

Given that the numerator of eq. 38 is order 1 the probability of failure can only be
small if the denominator is large, which occurs if Tv/Lc is large. This also has a natural
interpretation. Tv is the length of material that has passed over the sensor. Dividing this
by the correlation length Lc give the approximate number of independent samples. And
this is the usual reduction in variance with sample size. If this is large and the exponential
is limited then eq. 38 becomes

p(fail) ≈ 3

4

Lc

Tv
(39)

We focus on the case where the vertical velocities are small and consider uy = O(a1/2).

The probability of failure, from eq. 38, will then be small if T = O(a−1/2). This is the
most interesting gearing because the leading order terms contain vertical velocity terms
and acceleration terms. Using the results in the appendix and Gaussian correlation and
weighting functions we get.

p(fail) ≈ 3

4

Lc

uT
+

3

16

[L2(7a2
x + 3a2

y) − L2
c(2a

2
x + 5a2

y)]T

u3
xLc

+
3

8

u2
y

u2
x

L2 − L2
c

LcuxT
− 3

32

Lc

u3
xT 3
(40)

E[v̂x] − vx =
v2
y

vx
+

T 2a2

vx
(41)

V [v̂x] =
Lcv

2
y

4vxT
+

Lc(a
2
y + 3a2

x)T

8vx
(42)

Now that the acceleration terms are included it is clear that there is a value of T that
minimises p(fail), which scales like vx/a if L ≈ Lc. For such large T however the bias
would be of order vx, so that though the method would be likely to find a minimum in
the correct region, the error would be unacceptable. This illustrates part of the tradeoff
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Avalanche Velocities 13

between large T maximising the chance of finding a minimum, but large T also coupling
to accelerations and increasing the errors. This is also shown in the variance equation 42.
Large T decreases the first term in proportional to the number of independent samples

Tvx/Lc, but increases the second term because of acceleration. The variance term will be
minimised by a T approximately vy/a which is order a−1/2 as we assumed. If T = vy/a
then the bias term will just be of the same order v2

y/vx. This choice of T thus provides a
compromise between vertical velocity errors and acceleration errors. The bias equation 41
also shows that the all the errors to this order increase the apparent mean velocity.

Once the velocity estimate v̂x has been formed we can use these equations to estimate
the errors. This can be done as follows. The expected residual will be

E[e(τ0)] = C0

L2(v2
y + a2T 2)

2L2
cv

2
x

, (43)

and the curvature

E[ë(τ0)] =
C0v

2
x

L2
c

. (44)

If we equate the measured residual ê(τ0) and curvature ˆ̈e(τ0) to these equations we can
estimate the errors. Using eqs. 43 and 44

E[e(τ0)]

E[ë(τ0)]
=

L2(uy2 + T 2a2)

2u4
x

(45)

Thus the bias can be estimated as

−2u3
x

L2

ê(τ0)

ˆ̈e(τ0)
(46)

The beauty of this is that it is not necessary to directly estimate C0 or Lc. Thus our
revised estimate of the velocity is

v̂′x =
L

τ0
− 2u3

x

L2

ê(τ0)

ˆ̈e(τ0)
(47)

which is bias free to this order.
The variance equation eq. 42 can be similarly estimated if we approximate (a2

y +3a2
x) ≈

2a2 it becomes

V [v̂] = Lc
v2
y + T 2a2

4vxT
=

Lcu
3
x

2TL2

E[e(τ0)]

E[ë(τ0)]
(48)

Unfortunately it is not possible to estimate the variance without also estimating the cor-
relation length Lc, but this can be done using standard techniques. Eq. 48 is the variance
estimate of v̂ not of the bias corrected velocity v̂ ′. The variance of this will be larger since
there is the variance of the correction term to consider. For this reason it is probably best
to regard the bias correction as an error estimate rather than performing it directly. The
one standard deviation confidence interval will then be roughly

[

L

τ0
− 2u3

x

L2

ê(τ0)
ˆ̈e(τ0)

− vx

L

√

Lcvx

2T

ê(τ0)
ˆ̈e(τ0)

,
L

τ0
+

vx

L

√

Lcvx

2T

ê(τ0)
ˆ̈e(τ0)

]

, (49)

A check on the assumptions could also be performed by using the calculated v̂x to estimate
the acceleration ax.

The design criterion for correlation sensors can thus be summarised as follows in
decreasing order of importance

L ≈ Lc Eliminates spatial aliasing and allows correlations at all velocity angles. If this is
not possible then the sensor can only be operated in the range vy

v
L
Lc

= O(1)
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14 McElwaine et. al.

fs > 2v/Lc The sampling frequency must be high enough to prevent temporal aliasing
Tv
Lc

� 1 Good sample statistics

Ta
v2 � 1 Low bias and variance
vy

v � 1 Low bias and variance

Confidence intervals should be calculated according to eq. 49

The next two sections discuss how to reduce and eliminate the errors induced by vertical
velocities and accelerations.

4.5. 2d flow

C D

A B

Figure 10. Two-dimensional array of four sensors designed to measure vertical and horizontal velocities.
The active region of the sensors is as large as possible to reduce spatial aliasing.

A full discussion of design criteria for two-dimensional sensors is contained in McElwaine
(2003), but a rough approach is straightforward. The most important criterion for a 2d
sensors is that L ≈ Lc or smaller so that there are always the appropriate correlations
between the sensors. Figure 10 shows a sensor with four photo-transistors arranged on a
square. The optimal lag τ can be calculated between six pairs (AB, AC, AD, BC, BD,
CD) in a similar way as for 1D sensors. Let τx and τy minimise the respective expressions

ex(τx) =

∫

w(t)
{

[fA(t + τx/2) − fB(t + τx/2)]
2 + [fC(t + τx/2) − fD(t + τx/2)]2

}

dt

ex(τy) =

∫

w(t)
{

[fA(t + τy/2) − fC(t + τy/2)]
2 + [fB(t + τy/2) − fD(t + τy/2)]

2
}

dt,

where fA, fB, fC and fD are the signals from each photo-transistor. By combining the
signals in this way, rather than calculating separate lags for each pair, the errors can be
reduced. Diagonal correlation lags τAD and τCB can also be calculated between AD and
CB respectively. If we let τx and τy be the minimising correlation lags then

L

τx
=

v2
x + v2

y

vx

L

τy
=

v2
x + v2

y

vy
(50)

L

τAD
=

v2
x + v2

y

vx + vy

L

τCB
=

v2
x + v2

y

vx − vy
(51)

(52)

The bias and variance of each of the τ ’s can be calculated using the previous methods. Then
they can then be suitably combined to produce an estimate of vx and vy with minimum
error. Suppose that σx, σy, σAD and σCB are the expected root mean squared errors. Then
the minimum expected root mean squared error estimates can be calculated by minimising

[

L
τx

− v2
x+v2

y

vx

]2

σ2
x

+

[

L
τy

− v2
x+v2

y

vy

]2

σ2
y

+

[

L
τAD

− v2
x+v2

y

vx+vy

]2

σ2
AD

+

[

L
τCD

− v2
x+v2

y

vx−vy

]2

σ2
CB

(53)

The expression is complicated to minimise analytically especially as the estimated squared
errors, σ2

x etc., will be functions of vx and vy. It is however easy to minimise numerically.
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If the the flow were between directions AD and AB, then σy and σCD would be large and
the solution would be weighted towards τx and τAD. The result would roughly be

vx =
Lτx

τ2
x + (τAD − τx)2

vy =
L(τAD − τx)

τ2
x + (τAD − τx)2

. (54)

4.6. Continuous velocity estimation

The errors due to accelerations in the previous analysis are caused by assuming a fixed
velocity over the window width. If instead of this we try to estimate the varying function
v(t) at all times it is possible to eliminate or at least reduce this source of error. Eq. 17
can be naturally generalised to

e[τ ] =

∫

[f1(t + τ(t)/2) − f2(t − τ(t)/2)]2dt, (55)

where τ(t) is a function of time for the whole measurement period, e[τ ] is now a functional
and the integration is to be performed over the whole sample. In order for this to be a well
posed problem it is necessary to constrain τ(t) and this is done by introducing a penalty
functional term

λ

∫
(

dτ(t)

dt

)2

dt (56)

where λ determines the degree of smoothing enforced on τ . The Euler-Lagrange equation
for this system is

λ
dτ(t)2

dt2
= [ḟ1(t + τ(t)/2) + ḟ2(t − τ(t)/2)][f1(t + τ(t)/2) − f2(t − τ(t)/2)]. (57)

This equation can be efficiently solved using multi-grid techniques and the velocity calcu-
lated as vx(t) = L/τ(t). A full discussion will be included in future work.

5. Results

Experiments were carried out at the SLF chute in Davos. Preliminary results and three
different methods of analysis will be briefly mentioned. A full analysis will appear in a
later paper.

The velocity sensor array consists of a 5×5 matrix of photo diode/photo transistor
pairs. First we analyse the data using the traditional method of Dent (eq. 10). For each
row of the sensor array, the cross correlation function can be computed for 10 pairs of
signals corresponding to 10 combinations of each two time shifted sensor signals related
to 10 different stream-wise sensor spacings.

Assuming that the velocity of the flow does not change significantly while passing the
sensor array which has a stream-wise extension of 2 cm, the accuracy of the velocities
obtained from one row of the sensor array can be estimated by statistical analysis of
the velocities measured by all possible sensor pair combinations of the row. Previous
experimental setups of optical correlation velocity measurements in avalanches Nishimura
et al., Dent et al. (1993, 1998) were using only one pair of signals and therefore did not
allow such an error analysis.

Figure 11 shows a plot of the mean velocities obtained from all 5 sensors of row 3 and
5 of the sensor array where the error bars indicate the standard deviation of the mean
velocity, v̄, which is an average of the velocities obtained by correlation of each of the 10
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16 McElwaine et. al.

Figure 11. Velocity measurements by row 3 and 5 of the sensor array performed at April 3, 2002.
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Figure 12. Continuous velocity estimates with populations standard deviations (grey).
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Avalanche Velocities 17

sensor pairs of a row of the sensor array. The correlation functions have been evaluated
using a 0.16 s interval every 0.012 s.

The vertical distance between row 3 and 5 of the sensor array is 2.1 cm where row
3 is situated 2.1 cm above the sliding surface. Taking into account the errors mentioned
above, the velocities obtained by the two sensor rows are significantly shifted as is shown
in fig.11. Interpreting the plot with respect to the vertical spacing of the rows, the shear
can be estimated to be approximately 25 s−1 in the flow layer between 2.1 cm and 4.2 cm
above the sliding surface.

Figure 12 shows the velocities calculated using the continuous approach of section 4.6.
The standard deviations are calculated from the ten different velocity measurements pairs
at each row height. The gross features of the two results are clearly similar but the overall
velocities are considerably lower. So much so that the error intervals of the estimates do
not overlap. This is not that surprising as these are not true error estimates, but instead
highly correlated estimates of the variance in the velocity. That is they do not account
for any bias effects resulting from vertical velocities, so the true horizontal velocities
maybe considerably lower. Secondly the sensors are all closely positioned so that the
errors between the sensors cannot be assumed to be independent. Roughly speaking if
the correlation between the errors is ρ then the true standard deviation will be larger by
a factor 1/(1 − ρ).

6. Conclusions

The work in this paper is still ongoing and is by no means complete. In particular a
detailed analysis of the auto-correlations should be performed and also an explanation of
the large differences in the results of the two analysis methods in the last section. Though
correlation sensors are a very useful tool great care should be exercised in interpreting
the data and particular care taken to understand the uncertainties in the estimations. In
particular the usual estimate of velocity v̂x = L/τ is in fact an estimate of

vx +
v2
y

vx
+

T 2a2

vx
, (58)

and will therefore be considerably larger then the true velocity vx unless v2
y/v

2
x and T 2a2/v2

x

are small. The analysis also demonstrates that it should be possible to greatly reduce the
errors by using closely spaced two-dimensional arrays of sensors that are as small as the
smallest correlation lengths which are of the order of the grain size (1 mm).
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Appendix

A. Estimating Parameters

It is a well known result of classical statistics that the best asymptotic estimators are
maximum likelihood estimators (MLE). Unfortunately to apply these methods the proba-
bility density function of the reflectivity would have to be specified by a parametric model.
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If this could accurately be done this would provide the best method of analysis. If a bad
parametric model is applied however the estimators may be very poor indeed so until more
data is available we use a non-parametric approach which attempts to be similar to MLE
methods, but without requiring a complete probabilistic description. Our methods are
based on minimising a sum of residuals and if these residuals are regarded as independent
and Gaussian then this is equivalent to an MLE estimate.

Suppose that we estimate the speed of the flow v̂x = L/τ̂ by minimising a function
e(τ). To estimate the accuracy of the method we wish to find the bias or expected error
E[τ̂ ], the variance in the estimate V [τ̂ ] = E[τ̂ 2]−E[τ̂ ]2 and the probability that there is a
minimum close to the true value. In this appendix expressions for these values are derived.

Let e(τ) be a function of the data and assume that the true minimum occurs at τ0.
Due to noise and other inaccuracies when we attempt to minimise e(τ) we will find the
minimum at some other value τ̂ 6= τ0. Taylor expanding to second order

e(τ) = e(τ0) + τ ė(τ0) + 1/2τ 2ë(τ0) (59)

Thus the minimum will be found at at τ̂ = −ė(τ0)/ë(τ0) provided that ë(τ0) > 0. That is
the method will succeed if p(ë(τ0) < 0) is small and the error will be −ė(τ0)/ë(τ0). The
probability of failure can be bounded using Chebychev’s inequality. Let µ = E[ë(τ0)] > 0
and σ2 = E[ë(τ0)

2] − µ2. Then

P (ë(τ0) < 0) = P (a − ë(τ0) > a) ≤ P (|ë(τ0) − a| > a) ≤ E[|ë(τ0) − a|2]
a2

=
σ2 + (µ − a)2

a2
.

(60)
This upper bound is true for all a and is minimised by a = (σ2 + µ2)/µ so

P (ë(τ0) < 0) ≤ σ2

σ2 + µ2
≈ σ2

µ2
(61)

This shows that the the method will have a high probability of success if V [ë(τ0)]/E[ë(τ0)]
2

is small. This bound is conservative and in many cases ë(τ0) will be well approximated
by a normal distribution since it is the sum of many random variables. In this case the

probability of failure will be estimated as P (W ≤ 0) = 1 − erf
(

µW

σW

)

, where erf(x) is the

error function. The bias of the method is E[τ̂ ] = E
[

ė(τ0)
ë(τ0)

]

. Approximating ė(τ0) and ë(τ0)

as independent gives E[τ̂ ] = E[ė(τ0)]E[1/ë(τ0)]. The method only finds a local minima
when ë > 0 and since this occurs with high probability only when σ2/µ2 is small we
can write E[1/ë(τ0)] ≈ 1/E[ë(τ0)] so that E[τ̂ ] = E[ė(τ0)]/E[ë(τ0)]. The variance of the
estimate V [τ̂ ] can be calculated using the same approximations as before

V [τ̂ ] =
V [ė(τ0)]

E[ë(τ0)]2
=

V [ė(τ0)]

E[ë(τ0)]2
. (62)

Since the velocity is estimated using the rule v̂x = L/τ̂ the mean error in the estimated
velocity is

E[v̂x − vx] ≈ L

E[τ̂ ]
− L

vx
≈ L

τ0 − E[ė(τ0)]/E[ë(τ0)]
− L

τ0

≈ L

τ2
0

E[ė(τ0)]

E[ë(τ0)]
=

v2
x

L

E[ė(τ0)]

E[ë(τ0)]
. (63)

This assumes that the error is small compared to the true velocity. The variance in the
estimated velocity can be estimated similarly

V [v̂x] ≈ v4
x

L2

E[ė(τ0)
2]

E[ë(τ0)]2
. (64)
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These two eqs. 63 and 64 in conjunction with the following equation which gives the
probability that the method fails

P (ë(τ0) < 0) =
V [ë(τ0)]

E[ë(τ0)]2
(65)

give a means to quantatively evaluate different sensor designs and analysis algorithms.
They can also be used to estimate the degree of uncertainty in a measurement, that is to
calculate confidence limit or error intervals. To do this we need a means of estimating the
various expectations in terms of the observed data. E[ë(τ0)] can be approximated as ë(τ̂ ) in
the same way as maximum likelihood estimation. This cannot be done however for E[ė(τ0)]
since at the minimum of course ė(τ̂ ) = 0. There is no general method for approximating
this or the variances V [ė(τ0)] and V [ë(τ0)], but given a model for the underlying data these
can be approximated in terms of the total residual e(τ̂ ).
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