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ABSTRACT: An algorithm for calculating the motion of avalanches from films based on
changepoint determination is described. The method is designed for the detection of moving
objects against a static background and works for partially transparent objects and objects
with spatially and temporarily varying colour components. The method can be applied to
mono-spectral or multi-spectral signals and works well even with low quality video pictures
and uncontrolled illumination. The method is particularly suitable for tracking granular flows
and other scientific experiments.
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1 Introduction

Analysing films of avalanches can provide information about their position, size
and velocity. The data is invaluable for testing and developing theories and provides
much more information than almost any other sort of sensor. The data can be directly
compared with integral (lumped mass) models or continuum models.

However, analysing avalanche film is difficult and this has rarely been done quan-
tatively. Current methods mostly involve an operator going through a film picture by
picture and marking the outline of the avalanche by hand. Some automation has been
achieved [LAT 97] when the boundary of the avalanche was marked in one picture and
then tracked by computer. Any method that requires substantial input from a user
introduces a subjective element, different users will pick different edges, and the same
user will pick a slightly different edge if they repeat the analysis. This subjectivity
means accurate error estimation is impossible. If many films are to be analysed it is
also very time consuming if substantial user intervention is required.

This paper describes a method that is fully automatic which can be applied to a
wide variety of flows. Since films of avalanches, or indeed any flow experiment, are
expensive compared to the cost of computing power, we tried to develop an off-line
algorithm that made maximal use of the data without regard to the computational
cost.

The algorithm described in this paper was designed to analyse the video footage
from a series of experiments in Japan to investigate the structure of avalanches [NIS 98,
MCE 01]. The experiments took place at the Miyanomori Ski Jump in Japan (the
normal hill from the 1972 Sapporo Olympics). In these experiments up to 650,000
ping-pong balls were released at the top of the landing slope of the Miyanomori ski
jump and allowed to flow down the slope in an avalanche. In 1999 around eighty clips
of film were taken from varying positions and this algorithm was developed to analyse
these. The results of this analysis are presented in [MCE 02].

2 Digital Image Processing

Digital image processing is an enormous field [PRA 91]. One of the most basic
aims is the identification of objects in image sequences. This requires a model of the
object and the background. The simplest case is when they have known colours and
an image pixel can be classified by assigning them to the closest colour, using some
suitable metric. More usually the exact colours are not known in advance and they
are estimated using statistics calculated from the pictures. This technique extends
naturally to the case of image sequences where now the segmentation takes place in a
three dimensional space [DEN 99, LIM 90, JAH 97]. Other difficulties can be caused
by uneven illumination between the top and bottom of the slope, and by shadows.
These can cause the same object to have a different colour when it is on different
parts of the screen.
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Figure 1: RGB (Red, Green Blue) values for a background pizel.

Many objects and backgrounds are not of uniform colour and more complicated
techniques are necessary. If the object and background have slowly varying colours
relative to the difference between them then edge detection techniques can be used
to calculate the boundaries and thus the regions. More sophisticated techniques are
not applied directly to pixel value but to derived quantities such as temporal or
spatial gradients, or structure tensors that are constructed so as to include texture
information.

If information about the scene is incorporated into the algorithm more powerful
techniques can be used. For example, if it is known that the scene can be divided
into regions separated by simple curves then these curves can be tracked from pic-
ture to picture. This approach sometimes called snakes or active contours [KAS 87,
MA 97]has been applied to snow avalanches [LAT 97]. This approach works well when
there is a simple difference in some spatial property of the image between the objects.
For example they have different colours or textures.

If the experimenter has full control over the scene in his picture they can film
against a uniform background that has high contrast compared to the objects he
wishes to identify, and the lighting can be arranged so as to ensure that there are no
shadows. Under such controlled conditions the previously mentioned approaches work
very well. In other cases when the film is taken under uncontrolled conditions, such
as outside by amateur cameramen, this is not possible. With snow avalanches there
is the obvious difficulty that an avalanche is snow moving on a background of snow.
The difference in intensity and colour between the avalanche and the background is
very small. However, there are differences in texture between the background and the
avalanche, but these are hard to quantify.

3 Detecting First Arrival Times

Algorithms based on an accurate underlying model are more powerful than those
based on less information. The better the model describes and restricts the data the
better the algorithm will work and the more accurate the results will be. The pre-
viously mentioned techniques add very little information, though the active contour
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Figure 2: RGB values when the avalanche arrives around frame number 80.

approach does introduces smooth motion of the avalanche front from frame to frame.
In particular all of these approaches are local in time, that is they only consider a
few pictures at a time. An obvious feature of avalanches is that they move downhill.
This means that any point on the slope will have a roughly constant colour until
the avalanche arrives. It will have a varying colour while the avalanche flows over
that point of the slope. Once the avalanche has flowed past the colour will again be
approximately constant, though perhaps a different constant. Figure 1 shows a pixel
from a position on the slope where the avalanche never arrives. Figure 2 shows a pixel
from a position on the slope where the avalanche arrives around frame 70 and leaves
around frame 120. It is very obvious from these signals if and when the avalanche
arrives, even if the flowing material is the same colour as the background, because the
signal within the avalanche has much greater variation. If the first arrival time can be
calculated for all the pixels then the front of the avalanche at any time is represented
by a contour at that time.

Separating a signal into regions with different statistical properties is known as
changepoint detection and is a well studied problem in statistics [BAS 88, BAS 93,
OR 96]. We are concerned with off-line changepoint detection, that is using the whole
signal to determine where the changes occur.

We consider two approaches to choosing the changepoints MLE (Maximum likeli-
hood estimation) and the Bayesian approach MAP (Maximum A priori Probability),
and show that the results are largely equivalent.

4 Maximum Likelihood Estimation

The likelihood of a dataset z is it’s probability of occurring p(z). In Bayesian
analysis this is synonymous with evidence. We consider a vector valued signal x
at k times {x; € R? :j =1,...,k}. We suppose that the signals are drawn from
normal distributions with unknown mean values g € R? and covariances C; € R¥*¢,
First we consider a signal where all elements are identically distributed. Later we
consider signals where the parameters p and C are different in regions separated by
changepoints.



The probability that {z;: j =1...k} are drawn from N(u,C) is

_ exp{=3 3f (@i — p)CH(xi — )}
(27) 2k4|C| 2k

P({I?J]:].k,‘H/.L,C) ) (1)

where |C] is the determinant of C. If we define i = £ )", @; the sample mean and
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In the Generalised Maximum Likelihood Ration (GMLR) approach the unknown
parameters p and C are replaced by their maximum likelihood estimations, which are
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Substituting this back into eq. 2 gives the log likelihood as
log P = —1kdlog(2me) — 1klog|C| (5)
In the Bayesian framework we regard g and C' as random variables with specified
prior distributions [O’H 99, BER 94]. The standard prior distributions are to take p

normal with mean v and covariance C/8, and C~! to have a Wishart distribution
with exponent « and trace T'a. The log of the evidence P(z) is then
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This is essentially the same likelihood as the GMLR calculation eq. 6, but with the
prior distributions acting like additional data. The prior for w is equivalent to 3 data
samples having mean v, and the prior for C' acts like o data samples with covariance
matrix 7. If we wish to add additional data to the model, for example information
that the covariance of background pixels is small, this can easily be included by
choosing the prior variables. By taking limits as @ — oo a known covariance can be
included or 8 — oo a known mean. For the ping-pong ball avalanches the algorithm
performed well without using using any prior information that is « = 0 and 8 = 0.
For a film of a natural snow avalanche from Ryggfonn using prior information was
useful and is discussed later.



5 Changepoint Likelihood

Consider a sequence of n data points such that the first ¥ are drawn from one
normal distribution and the next n — k from a different one. Let p(k) denote the
likelihood of this changepoint then using eq. 6

logp(k) = logp({wili=1...k}) +logp({zili=k+1...n})
= —1indlog(2me) — $klog|Ch. k| — 5(n — k) log|Chy1..nl-

Where éjk denotes the covariance of {z;|j < ¢ < k}. To find the changepoint this
function must be calculated for all ¥ and the maximum value chosen.

This can be calculated efficiently as follows with a number of operations that scales
as nd?. A simple approach, followed in this paper for the ping-pong ball avalanches,
is to take the data to be the RGB (Red, Green and Blue) values from each pixel
so that d = 3. For the Ryggfonn snow avalanches there is very little colour in the
pictures and nearly identical results were obtained using RGB values or the sum
of these so that d = 1. There are many other possible choices for the data {z;},
such as transforming the pixel values or combining data from more than one pixel. A
transform to compensate for changes in exposure is discussed in section 7. A desirable
property of this algorithm is that it is coordinate invariant. That is, identical results
would be obtained if the data were transformed by a rotation, for example YUV
space, which is the native data space for many video recording formats. Define the
cumulative sums

J

J
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p(k) can thus be calculated by first going through the data calculating the total
sum values m,, and s,. Then making another pass where the cumulative sums are
updated, the likelihood calculated, and then the maximum found. We use a slightly
different function to maximise so that it is normalised, scale invariant and always

positive.
n—=~k

N k . .
M (k) =1log|Ci..n| — . log |Cy..x| — log |C+1...nl- 9)

M (k) measures the increase in the likelihood by introducing a changepoint at k as
opposed to modelling the whole signal as being drawn from the same distribution.

There are two small technical issues that need to be addressed. Firstly the pixel
data is quantised and this reduces the covariance. If we assume that the true values
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Figure 3: Multiple Changepoints, pizel values and log-likelihood.

are independently and uniformly distributed over the quantisation interval, then the
reduction in covariance is 11, where I is the identity matrix. Compression algorithms
can introduce larger quantisation errors so we include this as one of the model pa-
rameters and add Al to each covariance before calculating the determinant. If X is
taken to be large then

log |C + AI| = Trlog(C + AI) =dlog\+ Tr C + O(1/X).

Therefore

n—=k
n

M)~ Ty~ ST Cy =" E TGy

Thus M (k) does not depend on A and now is a function of the mean squared deviations
Tr C. In some situations this may give better results, But in general small values of A
are better since the algorithm is more sensitive to changes in the different channels.
For example, if the green value is constant and then changes to a new constant value
at the changepoint this would give zero determinants, thus infinitely high likelihood,
for the correct changepoint regardless of noise in the other channels. Whereas the
high A limit will only detect changes which are large in mean square summed over all
channels.

Secondly introducing a small value for A also deals with another numerical issue
that the determinants will be zero, and thus the logs infinite, unless there are more
than (d + 3)/2 samples. If uninformative priors had been used this would have been
reflected in factors of ¥k — 3 and n — k — 3 (when d = 3) in front of the logs in eq. 9
making the likelihood zero or minus infinity for fewer than four samples.

6 Multiple Changepoints

So far we have only discussed the presence of one changepoint, but in most cases
there are two that must be detected, that is when the avalanche arrives and when
the avalanches leaves. In the case of the ping-pong balls the background will be the
same after the balls have passed, so that we search for two changepoints that segment
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Figure 4: Multiple Changepoints, pizel values and log-likelihood with changed back-
ground. The front arrives around frame 100 and comes to a halt around frame 300.

the data into two statistically homogeneous regions. For snow avalanches, or regions
where the balls become stationary, the background mean value will have changed after
the avalanche has passed or stopped moving so that the two changepoints segment
the data into three statistically homogeneous regions. In either case the optimisation
now has to be carried out over two variables, the two changepoints, rather than the
one. A direct search would be expensive (order n? operations) and is not necessary.
Instead we alternate optimising the changepoints individually holding the other fixed
until convergence occurs. Typically this is extremely rapid and involves only one or
two searches for each changepoint. The top plot of fig. 3 shows a data sample and
the bottom plot shows the log likelihoods for the changepoints with the other held
fixed. The maximum of these functions clearly occurs at the arrival and exit of the
avalanche. Fig. 4 is similar to fig. 3 but there balls come to rest so that the background
has changed between the start and the end of the film. The extra variation in the
signal between the two changepoints is clearly visible. This could be used as the start
of a method of calculating internal velocities.

The searching for the maximum likelihood changepoints is a global method that
is very robust and nearly always locates the correct changepoints to within a few
frames. However, there are other properties of the signal that have not so far been
included here that can reduce the accuracy of the changepoint estimations. These can
all be regarded as a failure in the model, which is that the pixel values are unchanging
before the avalanche arrives. There are at least three causes of this. Compression of
video signals and band-limiting can introduce ringing and smearing between adjacent
pixels, so that a pixel value changes in advance of the avalanche arrival. This can be
minimised by using high quality video equipment, and working with video that has
been compressed without loss. Most video compression algorithms are designed to
exploit the perceptual properties of the human vision system, such as reduced chroma
resolution. Even though there can be negligible perceptual loss this information loss
will degrade the performance of any image processing algorithm and should be avoided
by working with lossless, or nearly lossless, compression systems. Other causes are
shadows which appear as a darker edge moving in front of the flow, and overall changed
in the intensity of all the pixels as the camera adjusts its exposure in response to the
changing scene. These last two effects are discussed in the following two sections.
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Figure 5: Changing pixel values due to the camera’s auto-exposure producing false
changepoints.
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Figure 6: The scale factor necessary to adjust for changes in erposure.
7 Luminance Adjustment

If the illumination of the scene changes the pixel values will be changed and this
can cause the determination of incorrect changepoint. This effect is rarely important
over film clips of a few seconds, but changes in the cameras exposure settings are very
important. The details of this will vary from camera to camera, but broadly speaking
if auto-exposure is operating a camera will adjust the exposure, aperture and shutter
speed, so as to maintain a constant brightness in the image. If a large white object
moves into the field of view, in our case a ping-pong ball avalanche, the camera will
reduce the exposure and the background pixels will darken. This problem would of
course be removed by turning off auto-exposure, but since there are many films where
this was not done it is necessary to account for it. This can be clearly seen in fig. 5
where a changepoint is incorrectly detected.

If we consider initially only background pixels which we index by z, where the
index is over position and colour components, and by ¢ which indexes frame number,
we can consider the complete image sequence as a function f(x,t) where ¢ is the frame
number and z the pixel coordinates. This can be written

[z, t) = fol2) fi(t) + Z(z,1), (10)

where fy(z) is the underlying pixel value at z, f; is the illumination and Z(z,t) is a
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Figure 7: The same pizel values after exposure compensation.

noise term.

This model assumes that video system is linear in intensity. If the nonlinear
response of the video system, for example the gamma curve, was known the data
could first be linearised using this information and the same analysis made. Another
possibility would be separate light intensities f; for Red, Green and Blue, if the colour
balance changes. For the films analysed in this paper neither of these refinements were
necessary.

A maximum likelihood approach is equivalent to minimising the squared error

> [f (@, t) = fol@) fu ()]
z,t

The solutions of this are the left and right eigenvectors corresponding to the largest
singular value of f(z,t) considered as a matrix.

f(z,t) is a large matrix typically of order 1,000,000 by 500. Fortunately the
largest singular value is much larger than the next, provided the background model
is accurate. Thus direct iteration gives convergence to machine precision in around
10 iterations

fo(@) = Y f@ 0 fe), folx) =Y flz,1)fi()

The iteration is started by taking fy(x) to be the mean background picture and f;(t)
to be constant.

Parts of the scene are not constant and would distort the luminance correction.
The iteration scheme is modified so that only pixels with a root mean squared devi-
ation of less than a threshold value 5 are included in the iteration. The value 5 was
found to work well for all the cases considered, because it is just above the standard
deviation of most background pixels. This threshold could instead be chosen dynam-
ically if it varied a lot from film to film. This non-linearity means that convergence is
no longer guaranteed, but in all cases considered convergence was achieved in no more
than 20 iterations. This approach has the useful feature of providing a very robust
segmentation of the image sequence into the background region, and the region which

10
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Figure 8: The lower figure is a close up of the upper figure and shows shadow cor-
rection moving the first changepoint from frame 164 to 175. The luminance is the
Euclidean length of the colour triple.

the avalanche enters. Figure 6 shows the calculated luminance function fi(¢). This
function can then be applied to all pixels to remove the changing exposure effect.
This is shown in fig. 7 which is the same data as fig. 5, but after the correction has
been applied.

If luminance correction is not required, thresholding into regions where the flow
enters and regions never entered can be achieved more quickly by calculating the
covariance of each pixel over the whole image sequence and then segmenting this.

8 Shadow Adjustment

The flow can influence pixels before it reaches a point by casting shadows illus-
trated in fig. 8. The overall luminance drops significantly in front of the avalanche
head, even though the red component rises a little, and this causes the changepoint to
be too early. It is typically the case that the changepoint will be chosen too early as
the values within the flow have much higher variance than the background. Different
strategies for finding the shadow are possible. A perfect shadow with no noise would
result in a monotonic decrease in all three colour components. So one could search
forward as far as all three are decreasing. This works in some cases but would fail for
fig. 8 as the red channel is increasing. Another choice would be to search forwards as
long as the total luminance, the square root of the sum of all three colour components,
is decreasing. Again in some cases this works but fails in fig. 8 as noise in the signal

11
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Figure 9: Time slice from an avalanche in Ryggfonn. The pizel is in the centre of
the avalanche and is not in shadow. The changepoint marked around 1600 correctly
detects the arrival of the avalanche around frame 1600. The tail of the avalanche is
less clear.

means that the luminance is not monotonic decreasing. A more robust approach is
to look for a global minimum of the luminance on some restricted region. Since the
ping-pong balls are brighter than nearly all of the background and the signals typi-
cally start with a peak we first search forwards a fixed distance looking for the largest
luminance value. Then a search is carried out for the minimum luminance between
the original changepoint and the maximum luminance. The results of this procedure
are shown in the bottom plot of fig. 8. Typical window widths for shadow searching
will depend on the nature of the flow; but for the data considered here 20 worked
well.

These methods are rather ad hoc. A more general method in keeping with the
approach of this paper would be to model statistically the shadow region, and find
changepoints on either side. A possible model might be

T; = o;p + X, (11)

which is the same as the model used for luminance correction. X; is a noise term
with zero mean and the same covariance as the background, and p is the background
mean value. 1 > o; > 0 are unknown nuisance parameters to be integrated out using
a Bayesian approach, or eliminated using Maximum Likelihood estimation. Further
conditions could be imposed on the a; such as linear decrease a; =1 — (i — 1)8, or
power decrease a; = B'%. Another approach is discussed in the next section.

9 Snow Avalanches

The algorithm has recently been applied to snow avalanches from Ryggfonn and
Col du Lautaret. This work is not complete but preliminary results are discussed.
The algorithm works without modification, but there are difficulties. Fig. 9 shows a
time slice where the edge of an avalanche is clearly located and the algorithm works
correctly. Fig. 10 shows a more difficult case from the same avalanche along the left

12
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Figure 10: Time slice from an avalanche in Ryggfonn. The pizel is on the left edge
of the avalanche and is in heavy shadow. The changepoint marked around 1450 does
not correctly detect the arrival of the avalanche but instead marks the arrival of the
shadow.

hand edge where there is strong shadow. The first changepoint shown in the figure is
not the arrival of the avalanche but the arrival of the shadow. The second changepoint
at frame 1667 is in fact the arrival of the avalanche. These changepoints are calculated
by modelling the signal as four regions. The first region is the background, the second
region a shadow the third region the avalanche and the fourth region the background.
For the background regions the covariance from the first background region is used
as prior information for the second and fourth regions enforcing low covariance.

10 Interlace Correction

The result of the changepoint algorithm with possible shadow corrections is a
first arrival time for the flow at each pixel. Many video systems including PAL and
NTSC are interlaced, that is a frame is divided into two fields of odd and even scan
lines. Care needs to be taken because depending on the video system and digitisation
procedure odd or even fields can be first. The interlacing can then easily be taken
into account by shifting the first arrival times on the odd or the even scan lines by
one field.

11 Filtering First Arrival Times

The first arrival times for each pixel are quantised by the frame rate 1/50s for PAL
or 1/60s for NTSC. That is the true first arrival could have been anytime between
one field earlier and one field later. The next step in the algorithm is to estimate this
exact arrival time using local smoothing and global constraints on the flow.

Let t(x,y) be the first arrival time at point (z,y),or infinity if the point is never
reached. Then we wish to find a smooth field f so that | f(z,y)—t(z,y)| < s, where s is

13



the time between fields (1/50s or 1/60s). One physically based criteria of smoothness
would be to try to minimise the implied accelerations. The velocity of the front is

Vf
v=—2_, 12
VP 12)
so the acceleration is v/ v/
a=(v-Viv= —— -V——. 13
V=g Vivir 1)

Since these are non-linear in f it is quite difficult to minimise these directly. Instead
we use an approach that will give local smoothing and impose global constraints.

The global constraint that we impose is that there can be only one interior min-
ima of f and no interior maxima. This is because the front of the avalanche is always
advancing and because we set the arrival time for points where the avalanche doesn’t
reach to infinity. The one minima corresponds to the source of the avalanche. It is a
great advantage of using first arrival times that these global constraints on the mo-
tion can be easily imposed. Solutions of Laplaces equation with Neumann boundary
conditions have no interior turning points and provide a smooth interpolation of the
boundary values. We therefore use the following regularisation which gives rise to a
Laplace equation with Neumann boundary conditions:

minimise // |Vf|?dedy subject to I(z,y)|f(z,y) —t(z,y)| <1, (14)

where I(xz,y) = 1 if the data at point (z,y) is trusted and I(z,y) = 0 otherwise. All
the boundary points are set to a number larger than the largest arrival times and fixed
as trusted. The purpose of I(z,y) is to prevent incorrect points from effecting the
results. A point can be marked as incorrect if no changepoint was detected or if it is
a local minima or maxima. One local minima is fixed as trusted corresponding to the
starting point of the avalanche. Solving eq. 14 results in Laplaces equation V2f =
0 with boundary conditions specified by the active constraints. For the boundary
conditions one point is fixed as a minimum of f(z,y) where the avalanche enters.
The outer boundary is all set to a number much larger than the largest arrival times.

The equations can be solved efficiently using successive over relaxation [GOL 89].
One iterative scheme is

fl@y) = wfz+Ly +f

—~

z—1,y)+ f(z,y+ 1)+ f(z,y — 1)]

f(z,y) I(z,y) =0 or |f(z,y) — t(z,y)| < 1
t(z,y) +1 I(z,y) =1and f(z,y) > t(z,y) +1
I(:E;y) |f(a:,y)—t(x,y)| <1
I(z,y) — 0 f(z,y) =t(z,y) + 1 and f(x,y) is local maximum
0 f(z,y) =t(z,y) — 1 and f(z,y) is local minimum,

where w is the relaxation parameter. We use the optimal relaxation parameter for an
n X m rectangular region with boundary conditions on the edge, which is

4
Y Y /A [cos(a/m) + cos(a/m)P

(15)
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Figure 11: Contours showing the position of the front at adjacent fields.

Figure 12: Contours showing the position of the front at adjacent fields, superimposed
on the avalanche from the same fields.
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The three steps are followed in turn for each position and the updated values used
for the next point. The scheme is iterated until the results are changing less than a
threshold. The scheme can be proved to converge.

The regularised first arrival times can then be used to plot contours of the front
position as in fig 11. Because there are no local minima or maxima except at the start
position there is exactly one contour for each time. Figure 12 shows two contours from
adjacent fields superimposed on the actual flow. Close examination of the data shows
that the contours are accurate to within a pixel near the front.

12 Filming Avalanches

This section contains a few suggestions for filming avalanches so as to maximise
the accuracy of subsequent analysis.

Turn the camera on its side. Video cameras typically have horizontal resolution
of around 720 pixels and a vertical resolution of 525 or 625. However, because of
interlacing the full vertical resolution is only available at half the sampling frequency.
Therefore if the main flow direction is horizontal in the picture frame the accuracy of
velocity measurements can be doubled.

Avoid shadows. When possible shoot with the sun, or light source, behind the
camera by choosing the camera location and time of day carefully. Shadows and other
effects such as glare, can be dealt with but increase the complexity of algorithms and
can reduce accuracy.

Set camera to manual. If the camera alters the focus, white balance, or exposure
during the image sequence the analysis is more complicated. It is also important to
keep the camera as still as possible.

Choose a long exposure. A long exposure time corresponds to high pass filtering
and reduces under-sampling aliasing errors. Ideally the exposure time would be the
same as the field rate.

13 Conclusions

This paper has presented a new approach to analysing image sequences from
avalanches. The method has wide applicability and should be useful in many fields.
From the smoothed first arrival times it is easy to calculate the velocity and accel-
eration of the avalanche edge at any time using eq. 12 and eq. 13. This provides
valuable data for testing and developing avalanche theories. The main limitations
of this approach are that the camera must be fixed and unzoomed throughout the
sequence.
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