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Abstract

The velocity profile and basal shear force were measured for snow flowing down a chute 34 m long and 2.5 m wide. The

flows were approximately steady by the end of the chute where measurements were taken and the angle was 32j. Measurements

of the basal shear stress confirm approximate dynamic balance. The velocity profile was measured using optoelectronic sensors

and showed a large slip velocity at the base, a shear layer of around 50 mm and an overlying plug-like flow of about 350 mm.

The velocity profile is compatible with both a Herschel–Bulkley rheological model, which combines a constant critical stress

with a power law dependence on the mean shear rate, and a Cross model where the effective viscosity varies between two limits.

Estimates of the Reynolds number suggest that the flow is not turbulent. The measurements are used to estimate the distribution

of energy dissipation and to show that its concentration near the base may locally melt the snow, and thus serve as an

explanation for icy melt surfaces observed at the base of flowing avalanche tracks.
D 2004 Elsevier B.V. All rights reserved.
Keywords: Avalanche dynamics; Channel flows; Snow rheology

1. Introduction models—that is dynamic models where the parame-
Despite decades of research, the constitutive be-

haviour of flowing snow is still not understood,

though many (semi)empirical and theoretical attempts

have been made to describe the flowing behaviour of

avalanche-like flows (Dent and Lang, 1983; Dent,

1986, Norem et al., 1986, 1989; Hutter and Koch,

1991; Savage and Hutter, 1991; Koch et al., 1994;

Louge, 1994; Hwang and Hutter, 1995; Bartelt et al.,

1997). Without a verified constitutive relation of

flowing snow, including boundary conditions, it is

impossible to develop genuinely predictive avalanche
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ters can be related to measurements of the snow cover.

A common approach in modelling the dense layer

of an avalanche is to depth average the continuum

momentum balance equations with a specified non-

Newtonian constitutive behaviour. These models are

usually based on several assumptions that include the

following:

(1) snow may be modelled as a continuum,

(2) snow may be considered as a simple fluid, that is

the constitutive relation of the snow may be

written as

s ¼ sðDÞ; ð1Þ
as where s is the deviatoric stress tensor and D is

the deformation rate tensor: Dij = 1/2(Bjvi +Bivj),



Fig. 1. Side view of the Weissfluhjoch snow chute. The downstream

distance between tube and array sensors is about 0.5 m.
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(3) snow is incompressible,

(4) the flow is laminar,

(5) vertical velocities can be neglected.

The depth averaged downslope momentum equa-

tion then takes the form

Bv̄

Bt
þ 1

2

Bv2

Bx
¼ source terms; ð2Þ

where v̄ ¼ 1=H mH0 vdy is the average downslope

velocity and v2 ¼ 1=H mH0 v2dy.

Most experimental data (Gubler, 1986; Nishimura

and Maeno, 1986; Nishimura, 1990; Nishimura and

Ito, 1997; Dent et al., 1997) suggests that v2cv̄2, so

that Eq. (2) can be approximated well by

Bv̄

Bt
þ v̄

Bv̄

Bx
¼ source terms; ð3Þ

which has the same left-hand side as a flow with

uniform velocity profile. This appears to suggest that

for snow flows the internal constitutive behaviour is

not particularly important. However, the source terms

on the right-hand side include boundary terms from the

depth integration that depend sensitively on the con-

stitutive behaviour. Without an accurate understanding

of the constitutive behaviour, they cannot be related to

snow properties and flow variables, but instead must

be fitted to a particular experiment or avalanche. Only

after understanding the constitutive behaviour can Eq.

(2) even be justified. Of course, also additional vari-

ables, such as granular temperature (Jenkins and Man-

cini, 1987), may be necessary for closure.

A chute may be used as a rheometer for fluids in

variety of ways. For example, by computing the flow

curve for steady simple shear flow from the discharge

curve (Ancey et al., 1996). In this work, we infer

properties of the constitutive behaviour of flowing

snow from velocity profile measurements. A rheolog-

ical model can then be tested by comparing its

predicted velocity profile with the measurements if

its parameters and boundary conditions are specified.

However, if the parameters are unknown and must be

fitted to the experimental data, a variety of experi-

ments at different flow depths, angles and boundary

surfaces should be performed. The great difficulty of

performing experiments with snow is that the snow

can vary from experiment to experiment. The large
size of the chute also means that only one or two

experiments can be performed per day if there are

appropriate weather and snow conditions. Because of

these difficulties, we present data from only a few

experiments and show that they are consistent with

two different rheological models.
2. Experimental setup

2.1. Chute design

Flows of snow were generated on a 34 m long

and 2.5 m wide chute which is located near the

building of the Swiss Federal Institute of Snow and

Avalanche Research on the Weissfluhjoch, near

Davos, Switzerland at 2670 m a.s.l. A schematic of

the chute is given in Fig. 1. The chute consists of a

20-m-long section, whose inclination can be varied

between 35j and 45j. For the results presented in

this paper, the angle was 45j. The next section is the

runout section where the angle changes in steps of

4.2, 6.05 and 3.5 m from 32j to 25j and then to

8j inclination. The upper half of the inclinable part

of the chute can be filled with snow, which is

released by opening the gate 10 m from the top. If

the bottom of the chute is smooth, then a plug-like

flow forms sliding on the metal surface. To create a

basal shear layer of finite thickness, the base was

roughened by rubber bars with the dimensions

24� 60� 600 mm (height, width, length).These rub-

ber bars are connected together with a streamwise
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spacing of 25 mm to form a mat with the dimensions

2� 8 m where the upper boundary of the mat is

placed about 2 m downslope of the release gate. In

the experiments with rubber mats, the flowing snow

experiences considerable shear in an about 5–10-cm-

thick layer near the bottom.

2.2. Basal shear stress measurement

The downstream basal shear stress exerted by the

flowing snow on the mats was measured by piezo

force gauges, which are connected to the rubber mats

by wire ropes. For a more detailed discussion, see

Tiefenbacher and Kern (2004).

2.3. Velocity profile measurement

To measure the flow velocity, optoelectronic sen-

sors were placed on the sidewall and in the middle of

the 32j angle section of the chute at the positions

indicated in Fig. 1. The measurement principle is

based on the cross correlation of signals of two

reflectivity sensors with a downstream spacing and

has, with some technical sophistication, been adopted

from Nishimura et al. (1993) and Dent et al. (1997).

The profile line at the sidewall is formed by six tube

sensors, which each consist of two reflectivity sensors

with a downstream displacement of 12 mm in a metal

tube and whose baselines are situated, respectively, 0,

39, 68, 101, 132 and 186 mm above the rubber mat

surface. At the centreline, 25 reflectivity sensors are

placed behind a half wedge which slices the flow in

such a way that the flow passing the sensors can be

regarded as to be nearly undisturbed. These 25 sensors

are placed in five rows of each five sensors with a

vertical spacing of 11 mm. The downstream spacing

of the five sensors placed in a row is about 4 mm.

Within a 50-mm-thick basal shear layer of the exper-

imental chute flows, this configuration provides a

vertical spatial resolution of the velocity profile of

11 mm with a high measurement accuracy, for the

velocity can be determined by correlation of the

signals of each of the 10 possible combinations of

two reflectivity sensors per row. The reflectivity

signals of the sensors are captured with a sampling

frequency of 40 kHz at 16 bits by an A/D converter

card and are stored in a PC, where they are further

processed by a cross correlation analysis. For a
thorough description of the technical details of the

chute, the measurement devices and the data process-

ing procedure, refer to Tiefenbacher and Kern (2004).

Alternatively, more sophisticated methods of velocity

data analysis are discussed in McElwaine and Tiefen-

bacher (2003).
3. Measurement results

In this section, we briefly describe the experimen-

tal observations which will be analysed in the next

section.

3.1. General flow behaviour

The flow on the initial rough acceleration section

of the chute has a typical flow height of about 0.4

m and it exhibits an avalanche-like head–tail struc-

ture with an approximately 8-m-long section of

constant flow height in the middle of the flow. At

the front, the flow height is about 20% higher than

the middle section of the flow. Analysis of video

recordings shows that the front velocity reaches

terminal velocity after about 8 m (Fig. 2), that is

before it reaches the velocity sensors. Thus, as a

first approximation, we assume that the flow is

steady at the velocity sensor position so that the

mean downslope velocity is constant within the flow

and depends only on depth.

To some extent, the time series of the basal shear

stress resembles the visually observed head and tail

structure, but it is also influenced by other effects such

as chute vibrations. However, during the time interval,

where the entire rubber mat was covered by flowing

snow, an approximately steady mean basal shear stress

of sR = 794F 231 kPa was measured (Tiefenbacher

and Kern, 2004).

3.2. Velocity profiles

Velocity profiles have been measured by the line of

tube sensors and by the sensor array, which was placed

about 0.45 m downstream of the tube sensors at the

chute centreline. Four measurements of the velocity

profiles have been performed. The velocity profiles

obtained by the tube sensors and by the array sensors

are shown in Figs. 3 and 4. Due to technical problems,



Fig. 2. Front velocity of the chute flow along the chute. The downslope position s is measured from the release gate.
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only one velocity measurement could be performed in

parallel with the basal shear stress measurement. For

this reason, the following analysis is done with the data

of this experiment, which was performed on May 15,

2002. As these data only slightly differ from the mean

of the three experiments performed with wet snow,

using theMay 15 data is a reasonable approximation, as

will be shown below.
Fig. 3. Profiles of the downstream velocity obtained by the sidewall

tube sensors.
The combined tube and array data of the May 15

experiment described in Section 2.3 is shown in Fig. 5.

The sidewall velocities are 0.5 m s� 1 slower than the

velocities obtained by the sensor array at comparable

heights. This effect is presumably due to sidewall

friction. Accordingly, in Fig. 5, the tube sensor profile

was shifted by 0.5 m s� 1 which results in a velocity
Fig. 4. Profiles of the downstream velocity obtained by the array

sensor in the chute centreline.



Fig. 5. Experimentally obtained velocity profile of the chute flow, which exhibits a shear layer with overburden plug-like flow layer. Squares:

measurement results of the high-resolution sensor array, triangles: velocities obtained from tube sensors, shifted by 0.5 m s� 1.
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profile which can be assumed to approximately resem-

ble the flow state at the chute centreline.

The lowest 50mm of velocity profile, as resolved by

the array sensor, show slip of about 5.5 m s� 1 and

considerable shear of about 43 s� 1, while the shear in

the overlaying 125 mm layer, as it is captured by the

tube sensor line, is of the order of 6 s� 1. This may be

interpreted as a hint to the general profile structure
Fig. 6. Principle sketch o
which is characterised by a high shear bottom layer and

an overburden plug-like flow layer as shown in Fig. 6.
4. Analysis

As the stresses within the flowing snow are not

experimentally accessible, we assume them to be
f velocity profile.
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determined by the averaged x-momentum equation for

a steady shear flow with constant depth which reads

ds
dz

þ gqsinh ¼ 0; v ¼ vðzÞêx; ð4Þ

where the mean density q of the flow is assumed to be

constant. The mean stress s = sxz contains both viscous
effects and averaging effects that result in Reynolds

stresses. The averaging can be thought of as averaging

in time or in space across and down the slope. The

boundary conditions is that there are no surface

tractions so that s(H) = 0, where H is the height of

the flow. The solution of Eq. (4) is

sðzÞ ¼ gqðH � zÞsinh: ð5Þ

That is the stress increases linearly with depth and

the shear stress s(0) on the basal surface is

s(0) = gqHsinhm, where hm = 45j is the slope angle

of the inclined part of the chute with the rubber mats.

Using the values in Table 1, this is 1110F 196 Pa,

which should be equal to the measured stress on the

mats sR = 794F 231 Pa. This is a reasonable agree-

ment as the error ranges overlap and one would also

expect friction between the rubber mats and the bottom

of the chute to reduce the measured shear stress.

4.1. Constitutive relations

The following analysis shows how the constitutive

behaviour of flowing snow can be examined using a

chute as a rheometer. However, the data in this paper

is not sufficient to discriminate between different

rheological models, but we show that it is consistent
Table 1

Principal measurements and derived quantities

Variable Value Description

H 0.400F 0.050 (m) Total flow depth

h 0.044F 0.006 (m) Depth of the shear layer

q 400F 50 (kg m� 3) Flowing snow density

v̄ 7.19F 0.2 (m s� 1) Mean velocity at

sensor position

v0 5.46F 0.2 (m s� 1) Slip velocity

vh 7.05F 0.2 (m s� 1) Velocity at upper

boundary of shear layer

sR 794F 231 (Pa) Stress on basal surface

h 32j Chute inclination at

velocity sensor position

c
.

(0) 69 s� 1 Basal shear rate
with the Herschel–Bulkley model and the Cross

model (Barnes et al., 1989).

4.1.1. Herschel–Bulkley

Since for times less than a few hours snow can

behave like a solid, a natural choice of a rheolog-

ical model is Bingham (Oldroyd, 1947)—one of the

simplest rheological models that includes both sol-

id-like and fluid-like behaviour. Visco-plastic mod-

els have frequently been used as a description for

the constitutive behaviour of flowing snow (Dent

and Lang, 1983). However, we will show that our

data rules out a Bingham model but is compatible

with a generalisation—the Herschel–Bulkley model.

Such a model recently was proposed to be included

in future flowing avalanche models (Issler, 2003).

We assume in this subsection that there is a shear

layer of h = 43 mm underneath a plug-flow extend-

ing to the surface H = 400 mm. The yield stress is

therefore sc=(H� h)gqsinh= 740F 100 Pa.

In the Herschel–Bulkley model, the stress is given

by

s

V sc
dv

dz
¼ 0

¼ sc þ K

�
dv

dz

�
a dv

dz
z 0:

;

8>><
>>:

ð6Þ

where az 1. If we assume that there is a plug flow bet-

ween h and H then Eq. (5) shows that sc=(H�
h)gqsinh. For this section, we will assume a known

slip velocity for the lower boundary condition, but

this will be discussed in more detail in Section 5.

Eqs. (5) and (6) can then be solved to give the velocity

profile

vðzÞ ¼
vh hVzVH

vh þ ðv0 � vhÞ 1� z

h

� �1þa
a

0VzVh
;

8><
>: ð7Þ

where vh ¼ v0 þ h a
1þa

hqgsinh
K

� �1=a
is the velocity at

z = h and v0 is the velocity at z = 0. The units of the

parameter K are of mixed power but we reparameterise

the rheological model by defining the stress for non-

zero shear as sc 1þ tc
dv
dz

	 
a� �
, where tc now has units of

time.



Table 2

Fit parameters for Herschel–Bulkley model (two significant figure)

Parameter a K (mixed) tc (s)

Best fit 2.0 0.033 0.0014

Smallest a 1.1 0.96 0.0017

Largest a l – 0.0013

The minimum and maximum values of a that fitted the data to

within 0.12 m� 1 as well as the least mean squares fit.
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The results of fitting this model to the data are

shown in Fig. 7 and the parameter values are shown

in Table 2. As well as the best values (least mean

squares of velocity), minimum and maximum values

for the exponent a are given so that the data is fitted

to an accuracy of 0.12 m� 1. This value is slightly

larger than the measurement errors but the data can

then also be fitted by the degenerate case a =l
corresponding to a linear velocity profile in the shear

layer.

These results are similar to the velocity profile

obtained by Norem et al. (1986, 1989) who derived

it from general constitutive equations for cohesive

granular material, where the shear stress was as-

sumed to be proportional to the square of the shear

rate, that is a = 2. One would also expect an a = 2
dependence if the shear rate dependent contribution

to the stress was caused by Reynolds stresses. This

agrees perfectly with our best fit value, but since the

spread of values compatible with data is so large no

definite conclusions should be drawn. The data is

sufficient however to rule out a Bingham a = 1

rheology.

4.1.2. The Cross model

The Cross model is a generic rheological model

where the effective viscosity varies between two

limits with the shear rate. We consider a simplified
Fig. 7. Fit to the Herschel–Bulkley model of the shear layer

velocity profile.
Cross model with exponent one. The kinematic vis-

cosity is defined by

l ¼ l0 þ l1kcċ
1þ kcċ

; ð8Þ

and the stress by s = qlc
.

, where c
.

wdv/dz. That is the

viscosity varies smoothly between l0 for zero shear to

l1 in the limit as c
. !l and kc is a time scale that

determines the range of shear that the transition occurs

over. Solving this equation with a zero shear upper

boundary condition and unspecified lower boundary

has the solution

v ¼ C þ zV

kc
� g

4l1

� zV2 þ zV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ zV2

p
þ a2sinh�1 zV

a

� �� �
; ð9Þ

where C is a constant that depends on the slip velocity,

a¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1l0�l2

1

p
=ðgkcÞ a n d z V=H + ( 2 l1�l0 ) /

(gkc)� z.

The good agreement between the measured data

(Fig. 5) and the Cross model is seen in Fig. 8 and the

parameters are given in Table 3. The parameters are

calculated using least mean squares error and the

residual was 0.15 m s� 1. A hundred random samples

were then generated by adding zero mean gaussian

noise with this standard deviation and the parameters

recalculated. The interquartile range of the parameter

estimates is shown in Table 3. The true uncertainties

are probably lower, particularly for the viscosity in the

shear layer l0 where the measurements are more

accurate.

4.2. Comparison with previous work

Early work on snow in fluidised beds (Maeno and

Nishimura, 1979; Maeno et al., 1980) suggested

kinematic viscosities of order 0.001 m2 s� 1. In our



Table 3

Fit parameters for the Cross model

Parameter Units Best fit Interquartile range

kc s 1.10 0.71–1.17

l0 m2 s� 1 2.1 1.4–2.2

l1 m2 s� 1 0.0027 0.0010–0.0032

v0 kg m� 1 s� 1 800 600–900

v1 kg m� 1 s� 1 1.07 0.40–1.29

The dynamic viscosities vi= qli are also given for convenience.

Fig. 8. Fit to the Cross model of the complete velocity profile.
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experiments, the snow is not fluidised so one would

expect higher values which is indeed the case. Inter-

estingly, the Cross model predicts that at very high

shear the kinematic viscosity will decrease to around

0.0027 m2 s� 1, which is of the same order of magni-

tude as Maeno’s results. Dent and Lang (1982) per-

formed experiments with very similar results (similar

flow depths, velocities and shear layer thickness), but

their measurements in the shear layer were less accu-

rate and more widely spaced. They concluded that the

data was well explained by a no-slip lower boundary

condition with a Bingham rheology with a yield stress

of sc = 540 Pa for snow of density q = 250–300 kg

m� 3 so that sc/q = 1.8–2.2 m s� 2. This is in excellent

agreement with our value of sc/q = 1.9 m s� 2. Dent

and Lang (1982) estimated the kinematic viscosity as

0.004 m s� 1 which is rather low compared to our

measurements. The Cross model fit implies a shear rate

of 69 s� 1 at the base and an effective kinematic

viscosity of 0.03 m2 s� 1—nearly 10 times larger.

The explanation, however, is that because they as-

sumed a no-slip boundary condition their estimate of

the shear rate was much higher leading to lower

estimates of the kinematic viscosity.

4.3. Shear layer Reynolds number

The Reynolds number can be used to estimate if a

flow is likely to be turbulent or laminar. For Newtonian
fluids, it is defined as Re = qvL/g, where g is the

viscosity and L is a length scale. For non-Newtonian

fluids, the situation is more complicated as there is no

constant viscosity, but instead a collection of param-

eters that determine the stress. A common approach is

to define the effective viscosity ge = s/ċ (Metzner and

Reed, 1955). This is straightforward to apply to pipe

and channel flows, where the stress and shear rate are

taken as the wall values and the mean velocity is

used. In this case, transition to turbulence occurs for

Reynolds numbers of around 2000 (Mannheimer,

1991). However, Herschel–Bulkley rheology is usu-

ally used with a no-slip boundary condition. In our

flows, there is a very large slip velocity so the shear

rate is discontinuous at the boundary. The value at the

boundary is infinite (implying zero viscosity), but if

we use the limiting value of the shear rate from above

we will overestimate the viscosity since the shear rate

will be low. Instead we take the shear rate across the

whole shear layer v(h)/h and the largest length scale

H. The mean velocity is very close to v(h) so

considering the Reynolds number for this layer we

get

Re ¼ qHvðhÞ
sð0Þ=½vðhÞ=h	 ¼

qHvðhÞ2

qghHsinh
¼ vðhÞ2

ghsinh
c220:

ð10Þ

Note that this estimate is the square of the Froude

number for the shear layer. It assumes that the flow is

laminar, that is all the stresses are viscous in nature,

which is consistent because Re is well below the

threshold of 2000. Alternatively, we could assume a

purely plastic constitutive behaviour so that the

stresses above the critical stress are Reynolds stresses.

The estimated Reynolds number would then be larger

by a factor of 1� h/H, which is not significant.



Fig. 9. Base of a flowing avalanche track with an icy surface. Vallee

de la Sionne, Valais, Switzerland, photograph: Andi Felber, SLF.
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This calculation is only a rough estimate of the

Reynolds number, but never the less it is so far below

the threshold, that it is a safe conclusion that laminar

flow is stable with similar rheologies. This suggests

four possibilities.

(1) One is that the flow is essentially laminar and the

constitutive relation is entirely viscous and

Reynolds stresses are small. This however seems

unlikely as the flow of snow down a smooth

channel without a rough bottom results in a much

thinner shear layer of only a few millimeters.

(2) Another possibility is that the flow is only quasi-

steady. That is the vertical velocities induced by

the matting play an important part in the

structure of the shear layer, but are not self-

supporting. Thus we would expect the shear

layer to gradually become thinner in a very long

chute as the vertical motions die away and the

flow to degenerate to the same plug-like steady

state that would have been reached if an entirely

smooth chute had been used.

(3) The third possibility is that there are stresses

generated by the granular temperature which is

related to the covariance matrix of the particle’s

velocities.

(4) The final possibility is that our estimate of the

Reynolds number is inaccurate. If the yield

stress is due to cohesion between snow particles,

one might expect the viscous stress to fall very

rapidly with shear rate before increasing, the

balancing stress being due to Reynolds stresses.

The minimum value of the effective viscosity

s(c.)/c
˙
would then determine the Reynolds

number.

4.4. Energy dissipation

We can use the velocity measurements to estimate

the energy dissipation in the flow. As a direct

consequence of the momentum conservation equa-

tion, gravitational work on the flowing snow has to

be balanced by the energy dissipation at the sliding

surface and in the shear layer. Consequently, check-

ing the energy balance does not provide a new

insight into the flow behaviour. It might, however,

be of some practical interest to discuss the estimated

values of energy dissipation with respect to obser-
vations at real avalanches. The bases of avalanche

tracks frequently exhibit an icy surface, which is

suspected to be due to the melting of snow at the

basal sliding surface. Fig. 9 shows an example of

such an avalanche track.

In what follows, we demonstrate that our exper-

imental results are compatible with the assumption of

basal melting due to energy dissipation at the basal

layer of the flowing avalanche. To do so, we start

with the local energy dissipation ws in the flow

which is the rate of work done by the stress on fluid

particles: ws = H (dv)/(dz). Integrating ws over the

depth of the flow and using Eq. (5) to eliminate

s(z), we may write down the total internal energy

dissipation Ws ¼ mH0 wsdz.

Ws ¼
Z H

0

s
dv

dz
dz ¼ ½sv	H0 �

Z H

0

v
ds
dz

dz

¼ qgHsinhðv̄� v0Þ; ð11Þ

where v̄=1/Hm0
H v dz is the mean velocity.

Eq. (11) shows that the dissipation in the flow is

proportional to the excess of the mean velocity over the

slip velocity. Thus, for a complete plug flow where

these are equal, all the energy is dissipated in the basal

layer. The other extreme is when there is a no-slip

boundary condition, so that v0 = 0 and then all the

energy is dissipated in the flow. The right-hand side

of Eq. (11) can be interpreted as the difference between

the rate of gravitational working Wg = gHqsinhv̄ and
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the rate of energy dissipation on the basal surface,

which is Wb = s(0)v0=gHqsinhv0 = v0sR. So we may

write for a steady flow

Ws þWb ¼ Wg: ð12Þ

Using the values in Table 1 we calculate

Wb ¼ v0sR ¼ ð4335F1271ÞWm�2;

Ws ¼
Z H

0

s
dv

dz
dz ¼ ð1438F1519ÞWm�2;

Wg ¼ gHqsinhv̄ ¼ ð5980F1070ÞWm�2;

where Ws has been calculated from the fitted velocity

profile in the shear layer (Eq. (7)) for the Herschel–

Bulkley model.

Given the accuracy of our results, energy dissipa-

tion within the plug-like layer appears unimportant.

Most of the energy is dissipated on the basal surface

with the remaining fifth within the shear layer. How-

ever, the inaccuracy of the results indicated by the

error ranges would, in principle, also allow for a

considerable energy dissipation due to particle colli-

sion processes in the low shear plug-like layer.

To estimate over what distance an avalanche must

travel before melting can occur, we compute the

temperature change rate and the melting rate for the

shear layer of the experimental flow. The latent heat of

fusion for ice is s= 334 kJ kg� 1, so that if all the

dissipated energy went into melting ice the rate would

be 17.3 g s � 1 m� 2, but if the energy dissipation were

evenly distributed the snow would have to fall a

vertical distance of s/g = 34 km to melt completely.

Thus a very uneven distribution is necessary for

melting to occur in avalanches. In addition before

snow melting can occur, the temperature of the snow

at the sliding surface has to be increased to 0 jC.
To estimate the time needed for this temperature

increase, we solve the 1D heat conduction equation

BT

Bt
¼ k

qc
B
2T

Bz2
; ð13Þ

where c = 4.19 kJ kg� 1 K� 1 is the specific heat

capacity of ice and k the thermal conductivity. We

consider a snow block at initial temperature

Tðt ¼ 0; z ¼ 0Þ ¼ T0; ð14Þ
which is heated by the energy dissipation at the base

of the flow (z= 0). That is, the boundary condition for

z = 0 is a constant flux of heat

1

2
Ws ¼

k
BT

Bz
A
z¼þ0

�k
BT

Bz
A
z¼�0

;

8>><
>>:

ð15Þ

where k is the heat conduction coefficient of snow.

The factor of two is because half the heat diffuses

upwards into the flowing snow and half down into the

snow pack. The solution of Eq. (13) with respect to

Eqs. (14) and (15) reads

Tðz; tÞ ¼ T0 �
Wsz

2k
erfc

z

2
ffiffiffi
j

p
t

� �
þ Ws

qc

ffiffiffiffiffiffi
t

pj

r

� exp � z2

4jt

� �
; ð16Þ

where j = k/qc. The time evolution of the temperature

at the basal surface z = 0 is

Tðz ¼ 0; tÞ ¼ T0 þ
Ws

qc

ffiffiffiffiffiffi
t

pj

r
: ð17Þ

For T0 =� 10 jC, and kc 1 W m� 1 K� 1, we find

the time t� 10 jC necessary to increase the basal snow

temperature up to the melting point to be t� 10 jC = 64

s (equivalent to 400 m). This means that the chute

flows which we created within our experiments are

not long enough to start basal melting if the snow is

� 10 jC cold. As the warming time to the melting

point is quadratic in the temperature difference to 0

jC, for ‘‘warmer’’ snow melting would be possible on

the chute even for the short travelling time of the

chute flow. Real avalanches can of course flow much

further than in our experiments. The flowing ava-

lanche leading to the icy surface shown in Fig. 9 was

observed to travel down the track for more than 1 min.

Assuming the same basal energy dissipation as for the

chute flow (which is most probably a lower bound

estimation), we would expect approximately 1 kg

m� 2 of molten snow half in the stationary snow pack

and half in the avalanche. This raw estimation is

compatible with the observation of an ice crust of

some millimeter thickness in the avalanche track

described above.
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5. Boundary conditions

Though this paper has focused on the internal

dynamics of the flow, another important question is

the correct basal boundary condition. This deter-

mines the overall speed of the flows and the runout

distance of an avalanche. Even with the extremely

roughened base, the slip velocity was 5.5 m s� 1 as

compared to an internal velocity difference of only

1.5 m s� 1. What determines this slip velocity? The

data presented in this paper is not adequate to answer

this question. A Coulomb friction type force would

suggest a friction angle identical to the slope angle,

but without any velocity dependence steady state

flows will not result. Assuming a local theory, the

boundary condition must be some relation between

u(0), c., q, and qgHcosh (we neglect the possibility of

dependence on higher derivatives). The simplest

dependence would be uð0Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHcosh

p
. This is a

Froude number type condition and our data suggests

that Fr ¼ uð0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHcosh

p
c3:0� 3:8. More compli-

cated relations involve introducing additional dimen-

sional parameters. A boundary condition often used

in fluid dynamics is u(0)� Lc
˙
= 0, where L is the slip

depthc 0.08–0.16 m. Both of these relations would

imply that a flow with a thicker shear layer would

have a higher mean velocity than an otherwise

identical flow with a thinner shear layer, if we can

assume that the thickness of the shear layer adjusts

to the boundary conditions over a slow time scale.

These possibilities could be distinguished by

performing experiments of different depths with

and without mats.
6. Conclusions and outlook

In this contribution, we presented some experi-

mental results about the velocity structure and about

the basal friction forces of sheared flow of snow on

a rough surface. The observed chute flows of snow

exhibit a shear layer of about 0.05 m thickness and

an overlaying low shear layer of about 0.35 m

thickness. We showed that these results are compat-

ible with a Herschel–Bulkley or a Cross rheological

model, but incompatible with a Bingham or New-

tonian model. However, since there does not appear

to be a well defined transition between the shear
layer and the plug-flow this suggests that the Cross

model is most appropriate.

Note, however, that flow normal velocity compo-

nents have not been measured and therefore have not

been considered in the analysis of the measurement

results. This means that the obtained effective shear

stress may also include Reynolds stresses due to flow

normal velocity components.

From the velocity measurements, we estimated the

energy dissipation in the basal layer and in the shear

layer of our experimental flow. The estimated energy

dissipation may explain the icy surfaces which are

frequently observed in the tracks of flowing ava-

lanches of moderate velocity (or considerable dura-

tion, respectively).

The main weakness of this work is that it is

essentially based on only one experiment. To provide

a rigorous test of the internal constitutive behaviour

and the lower boundary condition, a large number of

experiments need to be performed with identical

snow. The flow depth, basal surface and slope

inclination should all be varied. In addition, the

vertical fluctuation velocities should also be mea-

sured to assess whether the flows are turbulent or

laminar.

As the current velocity sensor layout does not

provide the possibility to resolve flow normal velocity

components, those could not be taken into account in

the current analysis. Measurements of two-dimension-

al velocities in the shear layer of chute flows of snow

will provide a more sophisticated understanding of the

structure of the shear layer of snow flows and more

robust statements on the constitutive behaviour of

flowing snow.
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