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The structure of gravity currents and plumes, in an unbounded ambient, on a slope of
arbitrary angle is analysed. Inviscid, rotational flow solutions in a wedge are used to
study the flow near the front of a current, and used to show that the Froude number isffiffiffi
2

p
and the angle of the front to the slope is 608. This extends the result of von Kármán

(1940) to arbitrary slope angles and large internal current velocities. The predictions of
the theory are briefly compared with experiments and used to explain the large negative
(relative to ambient) pressures involved in avalanches.
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1. Introduction

Gravity currents are flows driven by density differences and occur in many
situations (Simpson 1997). Early analytic work of von Kármán (1940) assumed
that inside the flow the pressure distribution was hydrostatic, and this
assumption has been used in later work with integral models and shallow-
water equations. By setting up a balance between the pressure of the irrotational
ambient fluid flow along the front of a gravity current and the hydrostatic
pressure in the gravity current von Kármán (1940) showed that the front makes
an angle of 608 to the horizontal. Benjamin (1968) extended this work and
calculated an approximate analytic expression for the shape of the front when the
flow depth is half the depth of the ambient fluid; the only case without
dissipation.

However, recent results from direct numerical simulations and experiments
have shown that in some cases the pressure inside these flows is far from
hydrostatic (see figure 1). In fact pressures well below ambient pressure can be
observed indicating the presence of large internal velocities.

In this paper we use the term gravity current to refer to buoyancy driven flows
on slopes of arbitrary angle, thus including vertical plumes as one extreme and
horizontal gravity currents as the other. We show that for finite volume releases
in an unbounded ambient the similarities are much stronger than has previously
been realized. In particular we show that the angle of the front relative to the
slope is 608 and that the Froude number is approximately

ffiffiffi
2

p
for all slope angles.

The analysis solves the steady Euler equations near the intersection of the front
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Figure 1. Air pressure at the base of a small powder snow avalanche compared with a fit to the
theory presented in this paper (labelled dynamic fit) and the standard hydrostatic assumption
(labelled hydrostatic fit).
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surface with the slope in the current and in the ambient. The Reynolds number is
assumed to be high enough that the viscosity can be neglected and the Euler
equations hold. Questions of stability are not addressed and turbulence is
ignored. We will assume that the current is denser than the ambient and thus
runs on the upper surface of the slope, but the reverse case of a lighter current
running up the underside of the slope is covered by the same analysis.
2. Flow in a wedge

Figure 2 shows a sketch of the flow in the vicinity of the front. We will work in
r, q polar coordinates centred at O, the intersection of the front with the slope,
and denote the coordinate unit vectors by r̂ and q̂. Working to lowest order in r
the front will be a straight line defined to be an angle FZ2f2 to the surface. We
assume that the flows are continuous in both regions and that the normal
velocity vanishes between the regions and on the surface, but that the tangential
velocity does not have to be continuous across surfaces. That is, we are
considering the high Reynolds number case where the boundary layers are small
compared to the thickness of the gravity current. The pressure must be
continuous everywhere.

The steady Euler equations (Navier–Stokes equation without viscosity for an
incompressible fluid) are

V$u Z 0; (2.1)

u$VuC
1

r
VpZ g; (2.2)

where u is the fluid velocity, r the density, p the pressure and g the acceleration
due to gravity. Figure 2 shows that both the flow in the ambient and the current
are flows in a wedge with half angles f1 and f2. Thus we proceed by finding the
general solution of equations (2.1) and (2.2) for flow in a wedge of half angle f.
For a wedge with rigid walls the boundary condition is that the normal velocity
Phil. Trans. R. Soc. A (2005)



Figure 2. Schematic in the vicinity of the front f1Cf2Zp/2.
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vanishes, that is q̂$ujqZGfZ0. If we define a stream function j(r, q) by

uZ
r̂

r
jq K q̂jr ; (2.3)

where the subscripts denote differentiation, then the continuity equation (2.1) for
incompressible fluids is automatically satisfied. The pressure can be eliminated
by taking the curl of equation (2.2) to give the vorticity equation

u$VuZ 0; (2.4)

where

uZK
jqq

r2
K

ðrjrÞr
r

; (2.5)

is the vorticity.
We consider a solution to lowest order in r. For the solution to be non-singular

the lowest order term must contain a power of r, so we look for solutions of the
form

jðr; qÞZ craf ðqÞ; (2.6)

where c is a constant with units of [L1KaTK1] and f(q) is dimensionless. Since the
streamfunction must be bounded, it is convenient to choose c so that f(qmax)Z1
for some jqmaxj%f. The anomalous dimension1 of c lies in the limit r/H/0,
where H is the height of the current (defined in figure 3). With this choice

u Z r̂raK1cfq K q̂araK1cf ; (2.7)

uZKcraK2ðfqqCa2f Þ: (2.8)

From equation 2.7 the boundary condition q̂$ujqZGfZ0 then gives two
boundary conditions on f(q)

f ðGfÞZ 0: (2.9)
1 See Goldenfeld (1992) for a full explanation especially exercise 10-4.
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Figure 3. Schematic of a gravity current on an incline.
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Substituting equations (2.7) and (2.8) into equation (2.4) gives

affqqqCð2KaÞfqfqq C2a2ffq Z 0: (2.10)

There are two special cases. When aZ0 equation (2.10) becomes fqqZ0 which
cannot satisfy simultaneously f(Gf)Z0 and f(qmax)Z1. The case aZ1 is
discussed in Appendix A(c). Henceforth we exclude these cases. Equation (2.10)
can be integrated to give

affqq Cð1KaÞf 2q Ca2f 2Ca2ðaK1ÞAZ 0; (2.11)

where A is a constant of integration. Equation (2.11) can be written

af 3K2=aC3

2fq

d

dq
½f 2=aK2ðf 2q Ca2f 2KAa2Þ�Z 0; (2.12)

which can be integrated to give

1=a2f 2q ZAK f 2 CBf 2K2=a; (2.13)

where B is another constant of integration. Writing hZf 1/a equation (2.13)
becomes

h2q Z aKh2Cbh2K2a; (2.14)

where a and b are two new constants. By definition the maximum value of f, and
hence h, is one, and this must occur interior to the interval, since from equation
(2.9) fZhZ0 on the edges, thus when hZ1, hqZ0, which implies bCaZ1. Thus
we can write

hq ZG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2Cbðh2K2a K1Þ

q
; (2.15)
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Table 1. Special case solutions to equation (2.16) including singular cases a%1

(The derivations are contained in the appendix.)

a f j note

a p/2 (r cos q)a shear
a p/(2a) ra cos (aq) irrotational
a f/1 1K q

f
ZIh2ðaK1Þ

a
2ðaK1Þ ;

1
2

� �
COðf2Þ small angle

/K1 f ra sinðfKqÞ
sin f

� �
CO 1ffiffiffiffiffi

Ka
p

� �
singular

1/2 f ffiffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1K

sin2 q2
sin2 f2

r
singular

1 f zr ð1CbÞcosðq
ffiffiffiffiffiffi
1Kb

p
ÞK2b

1Kb

a

3/2 f see Appendix A (d) linear pressure
2 f r2 1K sin2q

sin2f

� �
/1 f racos qCOð1=aÞ jqj!fKO 1

a

� �
aFor aZ1, b is defined implicitly by ð1CbÞcos f

ffiffiffiffiffiffiffiffiffiffiffi
1Kb

p� �
Z2b.
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with solution ð1
h

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2 Cbðh2K2a K1Þ

p Z jqj: (2.16)

There appears to be no general closed form expression for this integral. For aO1
this has real solutions on h2[0,1] for all positive b. The boundary condition,
equation (2.9), gives an implicit equation for b as a function of f and að1

0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2 Cbðh2K2a K1Þ

p Zf: (2.17)

The integrand is a monotonic decreasing function of b for all aO1 and h2[0,1).
Thus the integral is also decreasing from p/2 at bZ0 and tends to 0 for large b.
So there are solutions b(f, a) for all f!p/2 and aO1. Some exact and
approximate solutions are shown in table 1, where singular solutions have been
included for completeness.

Equation (2.15) can be used to rewrite equation (2.7) and (2.8)

u ZKcaraK1 sgnðqÞr̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1KbÞh2ðaK1ÞKh2a Cb

q
C q̂ha

� �
; (2.18)

uZ cað1KbÞð1KaÞðrhÞaK2: (2.19)

Equation (2.19) shows that non-trivial (cs0) and non-singular (aO1) solutions
are irrotational if and only if bZ1 and in this case fZp/(2a). On the slope and
front surface h(Gf)Z0, so the vorticity is infinite if a!2, constant if aZ2 and
zero if aO2. The velocity on the boundary can also be calculated by substituting
Phil. Trans. R. Soc. A (2005)



J. N. McElwaine1608
hZ0 into equation (2.18) to give

uðGfÞZHca
ffiffiffi
b

p
raK1r̂: (2.20)

Thus the velocity is known on the boundary without having to solve explicitly
for h.

Equation (2.15) can now be used to solve for the pressure field p(r, q).
Substituting equations (2.3) and (2.6) into equation(2.2) it becomes

Krc2a2r2aK3h2aK1ðhqqChÞr̂Cpr r̂Cpq=r q̂Z rg: (2.21)

Eliminating the derivative of h with equation (2.15) we get

rbc2a2ðaK1Þr2aK3r̂Cpr r̂Cpq=rq̂Z rg; (2.22)

which has solution

pZ rr r̂$gK 1

2
rbc2a2r2aK2: (2.23)

The pressure is only defined up to an arbitrary constant and in this section we
take pZ0 at the origin. This solution is most easily verified by substitution and
has the surprising result that the only dependence on angle is through gravity. It
is non-singular for all aO1.
3. Matching

(a) Front of the flow

These wedge solutions are valid in an intermediate zone. Near the bottom
surface there will be a viscous boundary layer satisfying a no-slip condition, and
on the boundary between the fluids (AD) there must also be a boundary layer.
We neglect these regions and simply match the pressure across the fluid
interface. This is valid because the pressure will not change significantly across
a boundary layer. We consider matching general wedge flows, but in the case of
a gravity current the incoming ambient fluid must be irrotational since there is
no source of vorticity. However, inside the gravity current vorticity can be
generated in the head, at the basal surface and on the front and then advected
back into the flow and cannot be determined by our analysis. We label ai,
where iZ1 for the ambient and iZ2 for the gravity current, and similarly for
fi, bi and ci.

From equation (2.23) the pressure in each fluid along their boundary OD (see
figure 3) is

piðrÞZKrirg
0 K 1

2
ribic

2
i r

2ðaiK1Þ; (3.1)

where g0Zg sin(xC2f1) is the component of gravity along the boundary and the
only term that depends on the slope angle x (see figure 3). Therefore equating the
pressures across the front, p1(r)Zp2(r), gives

2ðr2 Kr1Þg 0rCr2b2c
2
2r

2ða2K1ÞKr1b1c
2
1r

2ða1K1Þ Z 0: (3.2)
Phil. Trans. R. Soc. A (2005)



1609Rotational flow in gravity current heads
The three terms of this equation can be in balance, to lowest order in r, in
different ways. If all three terms are identically zero this corresponds to fluids of
identical density at rest and any front angle is possible.

If the fluids have identical density but are not both at rest then the flow
corresponds to a stationary separation point. Equation (3.2) becomes

b2c
2
2r

2ða2K1Þ Z b1c
2
1r

2ða1K1Þ: (3.3)

Thus a1Za2 and b1c
2
1Zb2c

2
2, so both fluids must be in motion. The velocity

across the front is continuous if c1 and c2 have the same sign. Any angle is
possible if at least one of the flows is irrotational. If both flows are irrotational
then f1Zf2Zp/(2a) and since f1Cf2Zp/2 we must have f1Zf2Zp/4, that is,
the front is perpendicular to the slope surface.

If r2sr1, we take without loss of generality that r2Or1 and g0O0. Since the
biR1 the second term in equation (3.2) is positive and cannot balance the first
term. Thus there are three possibilities, the first and the third term balance, the
second and third terms balance, or all three terms balance (to lowest order in r).

If the first and third terms balance then a1Z3/2 and a2O3/2 and equation
(3.2) is

2ðr2Kr1Þg 0 Z r1b1c
2
1 CoðrÞ: (3.4)

This is the same as neglecting the dynamic pressure in the current. If the flow in
the ambient fluid is rotational then any angle f1 is possible and this will be
determined by the vorticity of the ambient fluid in the vicinity of the stagnation
point. If however the flow is irrotational then thus f1Zp/(2ai)Zp/3 so the front
angle FZpK2f1Zp/3Z608.

If the second and third terms balance then a1Za2!3/2, This is similar to the
case where the fluids have identical density, but the velocity will be
discontinuous across the front. When the ambient fluid is irrotational however
the following argument excludes this possibility. From equation (2.5), when
uZ0, the stream function satisfies the linear equation

jqq CrðrjrÞr Z 0; (3.5)

with boundary conditions j(r, Gf1)Z0. The general, non-singular solution of
equation (3.5) is

jZ
XN
nZ0

enr
ðnC1=2Þp=f1cos½ðnC1=2Þpq=f1�; (3.6)

where en are constants. Bernoulli’s theorem along the streamline OD (qZKf1)
gives the pressure

p1ðr;Kf1ÞZK1

2
r1

XN
m;nZ0

enemðK1ÞnCmrðnCmC1Þp=f1K2: (3.7)

If one of these terms balances the linear hydrostatic contribution then (nCmC1)
p/f1K2Z1 for some non-negative integers n and m so f1Z(nCmC1)p/3 and
the front angle FZpK2f1Zp(1K2nK2m)/3. Thus the only positive front angle
is p/3Z608 when nZmZ0.
Phil. Trans. R. Soc. A (2005)



J. N. McElwaine1610
The other possibility is that a pressure term in the current is linear in r and
balances the hydrostatic term. Suppose that the leading order term in the stream
function in the current, has power a and there is another term with power a0

so that

jZ craf ðqÞCc 0ra
0
f 0ðqÞC.; (3.8)

where c0 is a constant and f and f 0 undetermined functions of q. Bernoulli’s
theorem along the streamline OD (qZf2) shows that the dynamic contribution
to the pressure is

K1

2
r2½c2r2aK2f 2Cc 02r2a

0K1f 02C2cc 0raCa0K2ff 0 C.�: (3.9)

The first two terms are non-negative, so the only term that can be negative and
balance the hydrostatic term is the cross term 2cc0raa

0K2ff 0 if aCa0K2Z1 and
cc0ff 0!0. The other two terms must balance with terms from equation (3.7) so
that p/f1Z2a and (nC1)p/f1Z2a0. Eliminating a and a0 from these three
equations we get f1Z(nC2)p/6 giving front angles FZp(1Kn)/3. Thus again
the only positive front angle possible is p/3Z608.

This argument assumes that the front is straight to second order and can only
be made rigorous, by a full second order analysis. This result also proves that
solutions such as Hill’s spherical vortex, or its two-dimensional equivalent,
cannot be in balance for different densities since aZ2. In fact apart from
degenerate cases the stagnation point must be non-analytic.

The last case to consider is when all three terms are in balance so that
a1Za2Z3/2. Then if the ambient fluid is irrotational f1Zp/3 and f2Zp/6,
so that the front angle is 608.

This argument has shown that the leading order term in the irrotational
ambient fluid stream function must be r3/2 and there can be no lower order term
in the current. The results of the previous section for wedge flows then show that
this means that the front angle must be 608 thus generalizing the result of von
Kármán (1940) to currents on slopes of any angle with significant internal
motions. Note that the front angle is relative to the slope and holds even when
the slope is inclined, so that the front may be beyond vertical and this is observed
in experiments (see figure 4).
(b) Rear of the flow

Similar analysis can also be performed at the rear of the flow, but there are
several differences. In general the ambient flow will separate and mix as it passes
over the gravity current head and B will be in a turbulent wake. Whether there is
a clear interface between the current and the ambient, so that point B is well
defined, will depend on the slope angle and the nature of the two fluids. If the two
fluids can mix then the rear boundary will be ill-defined even on shallow slopes. If
the current is a particulate suspension or an immiscible fluid then the rear
boundary may reform at the tail of the flow even if there is substantial mixing in
the vicinity of the head. We consider this case where there is a clear boundary
at the tail of the flow in the vicinity of B and we assume that the mean pressure
in the wake is 0.
Phil. Trans. R. Soc. A (2005)



Figure 4. Polystyrene ball gravity current on 708 surface. The dotted line is drawn at 608 to the
surface and is approximately parallel to the front. The solid black line labelled g is vertical. The
colours are reversed. Saltating balls in the turbulent tail can be seen. Once the head has formed
the angle is roughly constant down the slope and does not depend on the number of balls or the
slope angle (J. N. McElwaine, unpublished work).

1611Rotational flow in gravity current heads
The flow of the current in the vicinity of B will also be a wedge flow, so
matching the zero mean pressure in the ambient with the pressure in the current,
similarly to equation (3.2) gives

2ðr2 Kr1Þrg sinð4KxÞCr2b3c
2
3r

2ða3K1Þ; (3.10)

where r is a radial coordinate measured from B and b3, c3 and a3 are wedge flow
solution coefficients. The solution of this is 4%x, a3Z3/2 and 2ðr2Kr1Þg
sinðxK4ÞZr2b3c

2
3. A special case of this corresponds to a horizontal, hydrostatic

tail with 4Zx and c3Z0 and is expected on shallow inclines. The crucial
difference with equation (3.2) is that the hydrostatic term is negative if 4!x and
can be balanced by flow in the current. Since the flow need not be rotational the
angle 4 is not specified.
(c) Flow reflection

A feature of these wedge flows is that the streamlines are symmetric and in
particular u(f)Cu(Kf)Z0. When the flows have this symmetry in the ambient
and in the current there is a general relation between the pressure along the
surface in front of the current (pOA) and the pressure along the surface inside the
current (pOB) that only depends on the slope and front angles, fluid densities and
gravity. Let u2

i ðrÞZu2
i ðr;GfiÞ then

pOAðrÞZ p1ðr ;f1ÞZK1
2 r1u

2
1 Kgr1r sinðxCpÞ

pOC ðrÞZ p1ðr ;Kf1ÞZK1
2 r1u

2
1 Kgr1r sinðxCFÞ

Z p2ðr;f2ÞZK1
2 r2u

2
2Kgr2r sinðxCFÞ

pOBðrÞZ p2ðr;Kf2ÞZK1
2 r2u

2
2Kgr2r sinðxÞ:

9>>>>>=
>>>>>;

(3.11)

Eliminating u1 and u2 from these equations we get

pOB Z pOAK2gr1r sin xCgðr2 Kr1Þr½sinðxCFÞKsin x�: (3.12)
Phil. Trans. R. Soc. A (2005)
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The second term in this equation is the background hydrostatic pressure of
the ambient fluid. The third term can be positive, zero or negative depending on
xCF/2!p/2, xCF/2Zp/2 or xCF/2Op/2 respectively. Since FZp/3Z608
the angle at which the sign changes is xZp/2KF/2Zp/3Z608 as one would
expect on symmetry grounds. For other slope angles, equation (3.12) can be used
to infer the density of the flow when it is unknown according to

r2=r1 Z 1C
ðpOB KpOAÞ=ðgr1rÞC2 sin x

sinðxCFÞKsin x
; (3.13)

which is similar to the difference in the pressure gradients. Any deviations from
the prediction of equation (3.12) are indications of asymmetry in the flow fields.

The same argument can be used in the vicinity of the rear stagnation point B
to show

pBO Z pBD Cgr2r½sin xKsinðxK4Þ�; (3.14)

Z pBC C2gr1r sin xCgðr2 Kr1Þr½sin xKsinðxK4Þ�; (3.15)

where r measures distance from B.
(d) Continuity

Equation (3.2) shows that it is impossible to simultaneously match the
tangential velocity and the pressure across the front, thus there must be a
boundary layer, where viscosity is important and vorticity is generated. From
equation (2.20), the velocity difference across the front is

Du Z 3

2

ffiffiffi
r

p
½

ffiffiffiffiffi
b1

p
c1C

ffiffiffiffiffi
b2

p
c2�: (3.16)

Substituting for
ffiffiffiffiffi
b1

p
c1 from equation (3.2) and w.l.g c1!0 and c2O0 this becomes

Du Z 3

2

ffiffiffi
r

p ffiffiffiffiffi
b2

p
c2K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

r2

r1
K1

� 	
g 0C

r2

r1
b2c

2
2

s" #
: (3.17)

This is always negative for g0O0 and r2Or1.
4. Global flow

Figure 3 shows a schematic of the whole flow. Our analysis has taken place in the
vicinity of the origin O and is valid over distances for which the front is straight,
that is distances small compared to its radius of curvature. The question then is
how to couple this local flow pattern to the global flow. The flow of the ambient
fluid far in front of the current is straightforward and was analysed in McElwaine &
Nishimura (2001). However, to couple this far field solution to the flow in the
vicinity of the front and inside is not straightforward. Some useful results however
can be shown without tackling this, by considering a line on the surface passing
throughAOBC. On this line the fluid velocity perpendicular to the surface must be
zero, so, though it is not a streamline, Bernoulli’s theorem applies. We continue to
assume that the gravity current is in approximate dynamic equilibrium, so that
Phil. Trans. R. Soc. A (2005)



1613Rotational flow in gravity current heads
the rest frame of the current is not accelerating and the velocity of the ambient
fluid tends to U (parallel to the surface) at infinity. Henceforth, we consider a
pressure field in which the hydrostatic pressure due to the ambient has been
subtracted off and we take the pressure at infinity to be 0. In front of the flow at
distances r large compared to H the flow field is well approximated by a dipole
(McElwaine & Nishimura 2001) so the pressure on the surface between A and O is

pdðrÞZ 1

2
r1U

2 R3

ðr Cr0Þ3
2K

R3

ðr Cr0Þ3
� 	

; (4.1)

where r0 is a coordinate offset and R is the effective aerodynamic radius of the
current. r0 is the offset off O from the effective centre of the current. We will make
the natural choice r0ZR which corresponds to setting the point O to be on the
surface of the effective sphere.

As we approach O the solution must change to

p1ðrÞZ 1

2
r1U

2 1Kk
r

R

� �
; (4.2)

where kZRc21b1=U
2 is a non-dimensional constant. This satisfies Bernoulli’s

theorem as the pressure is ð1=2Þr1U 2 for rZ0. We blend the two solutions
together by requiring that the pressure and its first derivative are continuous
everywhere2 between A and O, in particular at the point rZ(lK1)R where we
switch between the two solutions. This results in the following two equations

1KklZ
1

l3
2K

1

l3

� 	
; (4.3)

KkZ 6
1Kl3

l7
: (4.4)

These have solution lZð1=6Þð676C36
ffiffiffiffiffiffiffiffi
353

p
Þ1=3Kð4=3Þð676C36

ffiffiffiffiffiffiffiffi
353

p
ÞK1=3K

ð1=3Þz1:39 with k then given by equation 4.4 so kz1.01. With these choices
there is no practical difference between the blended solution and the purely
dipole solution since the dipole solution is almost linear for small r (maximum
relative error is less than 5%).

Crossing the flow front at O the pressure must still be continuous, but its
derivative need not, because there will be a thin boundary layer where viscous
effects are important. From equations (3.12) and (4.2) the pressure inside the
gravity current on the slope surface is

p2ðrÞZ 1

2
r1U

2 1Kk
r

R

� �
C2gðr2 Kr1Þr sinðf2ÞcosðxCf2Þ: (4.5)

This should be valid over a similar range of small r/R to equation (4.2). The hydro-
static contribution from the ambient fluid has been dropped from equation (3.12).
Equation (3.12) cannot be used for larger r/R since the front will not be straight.

Moving further away from O towards B the speed and pressure are
unknown but Bernoulli’s theorem must hold. Thus ð1=2Þr1U 2Zð1=2Þr2u2

xC
2This must be the case for an irrotational solution of the Euler equations to be valid.
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Figure 5. Schematics of gravity currents on a flat surface and a low incline slope, with a viscous tail.
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pCgðr2Kr1Þr sin x, where ux is the (unknown) velocity parallel to the surface.
Since the flow is stationary the velocity at B must be zero, therefore
pBZð1=2Þr1U 2Kgðr2Kr1ÞH , where H is shown in figures 3 and 5 and is
defined to be the vertical distance between the front of the current and the tail
ignoring any viscous region. Behind the current the flow separates and is
turbulent, so that dissipation of energy and other viscous effects are important.
That is the fluid between B and C is accelerated back to U by viscous forces and
there is no pressure drop so that pBZpCZ0. Therefore

1

2
r1U

2 Z gðr2 Kr1ÞH0FrZ
ffiffiffi
2

p
; (4.6)

where FrZU=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðr2=r1K1ÞH

p
is the densimetric Froude number. This recovers

the standard result of von Kármán (1940) (with a corrected argument by
Benjamin 1968), but for an inclined surface. In the case when the surface is flat
the result still holds, but with an extra assumption that far from the front the
pressure inside the gravity current is hydrostatic and not just on the surface.

Putting these results together we now have a theory for the pressure all along
the surface except in the latter part of the current.

pZ

1
2 r1U

2 R3

ðrCRÞ3
2K

R3

ðrCRÞ3
� 	

OA r=ROlK1

1
2 r1U

2 1Kk
r

R

� �
OA r=R!lK1

1
2 r1U

2 1Kk
r

R

� �
C2gðr2Kr1Þr sinðf2ÞcosðxCf2Þ OB r=R!OðlK1Þ

unknown OB r=RZOðlK1Þ

z0; but turbulent fluctuations BC :

0
BBBBBBBBBBB@

(4.7)
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1615Rotational flow in gravity current heads
It does not seem likely that there can be any simple, general theory that covers
the latter part of the current (marked as unknown in equation 4.7) for all slope
angles since in general the flow will be turbulent with many eddies. The wake of
the current may also be turbulent, and the pressure may fluctuate significantly
about zero. In some cases however equations (3.10) and (3.14) might be
applicable. In the §5 we give a comparison of this theory with one experiment.

This section has given a very rough approach for matching the near field
solution to the far field solution, requiring that the pressure and its first
derivative are continuous along the line AOB. However there is no continuous
transition between the two solutions accept on this line. A curve separating
the plane into regions for the two solutions, so that the total solution is
continuous, can be found for certain choices of parameters. However, the
derivative of the pressure along AOB is then discontinuous and poorly
matches the data. A more sophisticated approach needs to make an expansion
in the vicinity of the front that includes two length scales related to the width
and the height of the flow.
5. Discussion

(a) Implications

One prediction that can be made from these results on front angle and Froude
number is the dependence of flow speed on flow volume. Figure 6 shows three
idealized flow profiles corresponding to different models. In case (i) the flow front
is assumed to be at 908 to the slope (FZp/2) and corresponds to the shallow
water approximation in coordinates parallel to the slope (Bonnecaze & Lister
1999). In case (ii) the flow front is assumed to be vertical (Webber et al. 1993)
(FCxZp/2) and corresponds to the shallow water equations in coordinates
aligned with gravity. In both (i) and (ii) the flow is assumed to be hydrostatic
so that the top surface is horizontal (fZx). In case (iii) the front angle is 608
(FZp/3) to the slope and the top surface is below horizontal (f!x). This
corresponds most closely to figure 4 where 4z208 and xz708. Assuming the flow
has volume V and width W then simple trigonometry gives

V Z 1

2
WH 2 sin F sin 4

sin2x sinðFC4Þ : (5.1)

For flat slopes (xZ0) this relationship is singular as there are no finite volume,
steady releases possible. Instead a finite flux gives rise to a steady current with
finite H. In cases (i) and (ii) this relation is also singular as the slope angle
becomes vertical (xZp/2). Case (iii) with FZp/3, which we argue is the best
approximation, does not suffer from this weakness. Combining equation (5.1)
with the Froude number relation in equation (4.6) gives

U Z 2g
r2

r1
K1

� 	� �1=2 2V

W

sin2x sinðFC4Þ
sin F sin 4

� �1=4
: (5.2)

This formula with FZp/3 predicts the steady flow velocity for all slope angles
between horizontal and vertical. With FCxZp/2 and fZx it reproduces
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Figure 6. Schematics of gravity currents on slopes with different font and rear angles.
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the result of Webber et al. (1993) where the flow depends on tan1/4 x which
diverges for steep slopes. This calculation has assumed that the current has a
triangular shape which is clearly not the case. However the tangent angles are
correct at either end and one can hope that deviations from equations (5.1) and
(5.2) can be accounted for by non-dimensional shape factors that are
independent of slope angle. However, the rear angle of the current 4 is
unknown. On shallow slopes where there is a hydrostatic region at the rear it
is equal to the slope angle x, but on steeper slopes the fluid in the current is
accelerated on the upper surface by the ambient and any angle less than or
equal to the slope angle is possible.
(b) Comparison with experiment

To illustrate the theory in this paper it is briefly compared with one
experiment in a series (J. N. McElwaine & B. Turnbull, unpublished work).
The experiment was carried out at the Swiss Federal Institute for Snow
and Avalanche Research in Davos on an open chute of 3 m in length and angle
xZ708. The air pressure was measured 2.5 m down the centre of the slope
through a small hole in the surface. Since the pressure is measured at a fixed
point with a differential transducer the background hydrostatic contribution
Phil. Trans. R. Soc. A (2005)



1617Rotational flow in gravity current heads
from the ambient fluid can be ignored. Video observations confirmed that the
flow was in dynamic equilibrium so its speed was roughly constant. In the rest
frame of the current the sensor is then measuring the pressure at the point
rZU jtKt0j, where t0 is the arrival time of the front at the sensor and U the
speed of the current.

The parameters to be fitted are R and U from equation (4.7) the arrival time
t0z0.14 s, the pressure minimum and the time at which it occurs t1z0.19 s, and
the time at which the pressure returns to zero t2z0.22 s. These were found using
a least squares fitting procedure and the excellent agreement is shown in figure 1.
The implied density r2 can then be found using equation (4.7). The fitted
pressure distribution gave the speed UZ2.6 m sK1, the aerodynamic flow radius
RZ0.05 m and the density of the flow r2Z13 kg mK3. The speed and size are in
agreement with the video observations. The density suggests a volume fraction of
around 2% which is reasonable, but there was no independent measurement of
this. The other curve in figure 1 shows a fit to a hydrostatic model where the
internal velocities are zero so the pressure decreases linearly between t0 and t2,
which is assumed to correspond to the end of the avalanche. This model suggests
the internal density is 2.7 kg mK3. The total disagreement with a hydrostatic
model is striking. It is remarkable that the pressure decrease inside the current is
linear over a time of around 0.05 s corresponding to a distance of 0.13 m which is
more than twice R, whereas in front of the flow the distance is approximately 0.8
R. This asymmetry, in contradiction to equation (3.12), shows that the front is
not flat over such large distances and the flow is not wedge-like. This is
presumably the result of a large eddy the centre of which corresponds to the
pressure minimum at t1. The linear fit between t1 and t2 is presumably the second
half of the eddy. Note that this is in disagreement with equations (3.10) and
(3.14–3.15). These predict that the pressure should decrease linearly as t
increases towards t2, whereas it is increasing linearly. This is probably because
the rear edge is not well defined and the assumptions leading to these equations
are therefore invalid. This may also be related to why the two estimates for the
internal density are so different. The first estimate comes from the jump in the
pressure gradient at t0 and estimates the density at the front of the head.
The second estimate comes from the total pressure drop across the current
divided by its length so it measure the mean density. The large difference
suggests that the density varies strongly in the current and is largest in the front,
which is consistent with figure 4.

The sensor measures only the air pressure and does not measure any
contribution from particle–particle contacts, either collisional or continuous.
This distinction does not exist for fluid–fluid systems and is not important for
low volume fraction suspension currents, where nearly all the stress is borne by
the fluid. At higher particle concentrations where there maybe significant
particle stresses, the measured air pressure will be lower and it would also be
interesting to measure the particle stress on the surface. Though the
measurements differ in this case the analysis is the same provided that the
stress tensors for both the interstitial fluid and particles are isotropic—that is
the stress tensor is pI were p is the pressure and I the identity matrix. This is a
reasonable approximation provided that densities are sufficiently low so that
there are few continuous contacts.
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(c) Extension to three-dimensional flows

Over distances small compared to the radius of curvature of the front in the
plane of the slope the conclusions of this paper are not effected. Extending the
analysis to include three-dimensional spreading is rather difficult as the solution
now needs to contain a line (intersection of the front with the slope) of non-
analyticity. The only solution we have been able to find concerns a different case
that is axisymmetric, so that there is only a single point of non-analyticity. In
spherical polar coordinates the potential flow solution in the ambient fluid with
linear pressure decrease is

jZ r3=2P3=2ðcos qÞ; (5.3)

where Pg is a Legendre function of order g. The velocity field is

u ZVjZ 3

2

ffiffiffi
r

p
P3=2ðcos qÞr̂C

3

2

ffiffiffi
r

p

sin q
P3=2ðcos qÞcos qKP1=2ðcos qÞ

 �

q̂; (5.4)

where for this section only r̂ and q̂ are unit vectors in spherical polar coordinates.
The condition of zero normal velocity on a cone of half-angle f is then

0Zu$q̂jqZf Z
3

2

ffiffiffi
r

p

sin f
P3=2ðcos fÞcos fKP1=2ðcos fÞ

 �

; (5.5)

which has numerical solution fz1158, corresponding to a front angle of 658.
Since there is no dependence on the azimuthal angle the pressure will only
balance a flow falling down a vertical slope. Whether such half-cones flows with
an angle of 658 exist would be an interesting experiment.
6. Conclusions

This paper has shown that the principal analytic results concerning gravity
currents, namely FZ608 and Froude number is

ffiffiffi
2

p
, are still valid for gravity

currents on any slope from horizontal to vertical with or without significant
internal velocities. At first sight these are a very surprising results, however,
careful thought makes them obvious. The excess pressure due to the buoyancy in
the flow must decrease linearly along the front, and the only irrotational flow
with this property has an angle of 1208 so the front angle must be 608. The slope
angle is irrelevant. The Froude number must be

ffiffiffi
2

p
(with suitably defined H)

whenever it is reasonable to neglect dissipation and thus apply Bernoulli’s law
along a straight line close to the surface. It is also necessary that the pressure in
the ambient fluid behind the head, where the depth H is defined, is
approximately hydrostatic. That such a Froude number condition is satisfied
even with significant vertical velocities at the front of a flow may help to explain
the unreasonable effectiveness of the shallow water equations in describing
such flows.

This theory provides an explanation for the large negative pressures that
have been observed inside some gravity currents and the roughly constant front
angle. Predictions are made concerning the velocity inside the gravity current
which could be tested with direct numerical simulations (DNS). Further work is
Phil. Trans. R. Soc. A (2005)



1619Rotational flow in gravity current heads
necessary to match these solutions to the surface and across the front with
boundary layers and to the ate the rear of the current.

The author is funded by the Isaac Newton Trust and the EU SATSIE project. The data shown in
figure 1 was obtained with the help of Barbara Turnbull and Perry Bartelt at the Swiss Federal
Institute for Avalanche Research (SLF) during a visit by the author funded by the Swiss National
Science Foundation. The author would like to thank an anonymous referee for numerous comments
and questions that have hopefully resulted in a more understandable paper.
Appendix A. Special cases

(a) a/K1

The integrand in equation (2.16) can be approximated by writing

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2 CbðhbK1Þ

p Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Kh2Kb
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1K Kbhb

1KbKh2

q ; (A 1)

Z
1

ð1Kh2 KbÞ1=2
C

Kbhb

ð1Kh2KbÞ3=2
COðh2bÞ; (A 2)

where bZ2K2a. The expansion is uniformly convergent and can be integrated
since ðKbhb=1KbKh2Þ%1 for all h2[0,1] and b!0, thus it lies within the radius
of convergence. The indefinite integral of the first term is sinK1 h=

ffiffiffiffiffiffiffiffiffiffiffi
1Kb

p
. The

second term of the series can be integrated asymptotically using Watson’s lemma
as ð2

ffiffiffiffiffiffi
Kb

p
bÞK1COðbK2Þ. Therefore

sinK1 1=
ffiffiffiffiffiffiffiffiffiffiffi
1Kb

p
KsinK1 h=

ffiffiffiffiffiffiffiffiffiffiffi
1Kb

p
COð1=bÞZ jqj: (A 3)

Thus bZKcot f2CO(1/b) and

h Z
sinðfKqÞ

sin f
COð1=

ffiffiffiffiffiffiffi
Ka

p
Þ: (A 4)

(b) a[1

Let bZ2aK2 and bZgb. Then the integrand (2.16) is

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2Cðg=hÞb Kgb

q z

0 h!g;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2

p hOg:

8><
>: (A 5)
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This can be made precise by splitting the integration into three part [0, g(1Kd/b)],
[g(1Kd/b, g(1Cd/b] and [g(1Cd/b, 1]. Over thefirst range lethZg(1Kd/b)x1/b then

I1 Z

ð1
0
gdx

1

b
ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1Kg2Þx2Ced

p CO
1

b2

� 	" #
; (A 6)

Z
2g sin hK1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

p
eKd=2

� �
b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

p CO
1

b2

� 	
: (A 7)

Over the second range let hZg(1Kx d/b) then

I2 Z

ð1
K1

gd dx
1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2 CeKdx

p CO
1

b2

� 	" #

Z
2g

b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

p sin hK1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

q
ed=2

� 	
Ksin hK1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

q
eKd=2

� 	� �
CO

1

b2

� 	
:

9>>>=
>>>;

(A 8)

Over the final range we split the integrand into two parts. The first part is

I3a Z

ð1
gð1Cd=bÞ

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2

p Z cosK1½gð1Cd=bÞ�: (A 9)

The second part comes from substituting hZg(1Cx/b)

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2Cðg=hÞb Kgb

q K
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1Kh2
p Z

g

b

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2 CeKx

p K
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1Kg2
p

" #
CO

1

b2

� 	
;

I3b Z

ð1
d

g

b

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2 CeKx

p K
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1Kg2
p

" #

Z
2g

b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

p sin hK1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

q
ebð1KgÞ=ð2gÞ

� 	�

Ksin hK1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

p
ed=2

� �
Cd=2K

bð1KgÞ
2g

�

Z
2g

b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

p logð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

q
ÞKsin hK1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

q
ed=2

� 	
Cd=2

� �
CO

1

b2

� 	
:

Adding these terms together, all the terms containing d cancel (as they must) and
we get

I Z I1 CI2CI3a CI3b Z cosK1gC
log 2g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

p� �
b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kg2

p CO
1

b2

� 	
: (A 10)
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1621Rotational flow in gravity current heads
Taking only the leading order term, which does not depend on b we then have
bZg bZcos b f. The same analysis for h(q) can be used to show

hðqÞZ cos q q!f: (A 11)

For q close to f there is a boundary layer where h/0.
(c) aZ1

When aZ1 equation (2.10) can be integrated once to give

ffqqC f 2 CAZ 0; (A 12)

which can be written

f

fq

d

df
½f 2q C f 2C2A log f �Z 0; (A 13)

and then integrated to give

f 2q ZBK f 2K2A log f : (A 14)

For aZ1 and gZh the normalization condition gives BZ1 AZb. This can then
be written as ð1

h

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2K2blog h

p Z jqj: (A 15)

The leading contribution comes from hz1 so we expand log hZ(hK1)K(hK1)2/
2CO[(hK1)3], which is absolutely convergent for hO0, h!2, to giveð1

h

dhffiffiffiffiffiffiffiffiffiffiffiffi
1Kh

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C3bKhð1KbÞ

p Z jqj: (A 16)

The nature of this integral changes between trigonometric and hyperbolic
depending on the sign of 1Kb, but both cases are equivalent since cos iqZcos hq,
so we assume b!1. This then integrates to

cosK1 ðhð1KbÞC2b=1CbÞ½ �ffiffiffiffiffiffiffiffiffiffiffi
1Kb

p Z jqj; (A 17)

thus

hðqÞZ ð1CbÞcosðq
ffiffiffiffiffiffiffiffiffiffiffi
1Kb

p
ÞK2b

1Kb
; (A 18)

where b is the solution of the transcendental equation

2bZ ð1CbÞcosðf
ffiffiffiffiffiffiffiffiffiffiffi
1Kb

p
Þ: (A 19)

This solution is accurate to a few percent except for very small f and q.
The accuracy could be improved by splitting the range of integration and making
a different approximation for Klog h[h2.
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(d) aZ3/2

When aZ3/2, equation (2.16) results in the elliptic integral

jqjZ
ð1
h

ffiffiffi
h

p
dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1KhÞðbChCh2Þ
p : (A 20)

There are four branch points at 0, 1, K1/d and Kbd, where dZð1Cffiffiffiffiffiffiffiffiffiffiffiffiffi
1K4b

p
Þ=ð2bÞ so that (bChCh2)Z(1Cdh)(bCh/d). For real and positive b all

the branch points apart from hZ1 have non-positive real part so we take a
branch cut [1, N] and restrict the integral to non-negative real part.

Changing variables to xZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1CdÞ=ð1CdhÞ

p
and defining mZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bd2K1

p
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bdð1CdÞ
p

and bZd/(1Cd) gives

qZ

ð1
x

2x2dxffiffiffi
b

p
ð1CdÞ3=2ð1Kbx2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kx2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Km2x2

p

Z

ð1
x

2dx

d
ffiffiffi
b

p ffiffiffiffiffiffiffiffiffiffiffi
1Cd

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kx2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Km2x2

p 1

1Kbx2
K1

� �

Z
2

d
ffiffiffi
b

p ffiffiffiffiffiffiffiffiffiffiffi
1Cd

p ½Pð1;b;mÞKFð1;mÞKPðx; b;mÞCFðx;mÞ�:

9>>>>>>>>>>=
>>>>>>>>>>;

(A 21)

F and P are incomplete elliptic integrals of the first kind and third kind
(Gradshteyn & Ryzhik 1980). The main result we need in this paper is that for
fZp/6 bz7.65 (by numerical solution). There appears to be no simple, explicit
form for h(q).

For small values of f, b is large and one can use an asymptotic series in b as an
approximation to get the solution

qZ 1

2
cosK1ð2hK1ÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1KhÞ

ph i
bKð1=2ÞCOðbKð3=2ÞÞ: (A 22)

Thus bz[p/(2f)]2.
(e) f/1

For small wedge angles f, b must be large and we can approximate as follows.
(1Kh2)/(h2K2aK1) is increasing for all bO0 and attains its maximum value, on
the range of integration, of 1/(aK1) when hZ1. Provided then that b(aK1)O1
we can expand the integrand and integrate term by term. Thus

ð1
h

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kh2Cbh2ð1KaÞKb

p Z

ð1
h
dh

1ffiffiffi
b

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð1KaÞK1

p COðbKð3=2ÞÞ
� �

(A 23)
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1623Rotational flow in gravity current heads
After a change of variables xZh2(aK1), this is an incomplete elliptic integral
equal to

B a
2ðaK1Þ ;

1
2

� �
KBh2ðaK1Þ

a
2ðaK1Þ ;

1
2

� �
2ðaK1Þ

ffiffiffi
b

p : (A 24)

Thus

bZ
b2B a

2ðaK1Þ ;
1
2

� �
f2

COð1Þ (A 25)

Using the normalized incomplete Beta functions Ix(p, q)ZBx(p, q)/B(p,q)
(Gradshteyn & Ryzhik 1980), and substituting in for b, the solution is then
given implicitly by

Ih2ðaK1Þ
a

2ðaK1Þ ;
1

2

� 	
Z 1Kq=f: (A 26)
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