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Abstract

Opto-electronic sensors using infrared LEDs and photo-transistors

have been used for measuring velocities in snow avalanches for

more than ten years in America, Europe and Japan. Though they

have been extensively used, how they should be designed and how

the data should be processed has received little discussion. This
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paper discusses how these sensors can be applied to measure two-

dimensional velocities. The effects of acceleration and structure

in the underlying field of reflectance are carefully accounted for.

An algorithm is proposed for calculating the continuous velocity

vector of an avalanche and a sketch of the mathematical analysis

given. The paper concludes by suggesting design criteria for such

sensors.

1 Introduction

Opto-electronic sensors have been used for a long time to measure the

velocities inside granular flows. Some of the earliest work was done

by (Nishimura et al., 1987) on snow avalanches and continued in (Nishimura

et al., 1993). Early work was also done by (Dent et al., 1998) and mea-

surements were taken from the “Revolving Door” avalanche path near

Bridger Bowl, Montana.

The basic design of these sensors is simple. An infrared LED emits

light that is reflected by the passing granular material and this is detected

by an infrared-sensitive photo-transistor, amplified, digitised and stored

on a computer. By comparing the signals from nearby sensors its is

possible to calculate the velocity of the flow.

In theory it is possible to calculate many other pieces of information

about the flow since the magnitude of the back scattered light depends

on the density, type, size, and orientation of the snow crystals. However,

though (Dent et al., 1998) tried to relate reflectivity to snow density

he failed because crystal size and type are much more important than

density. Some gross aspects of the flow can be determined however. For



example in deposited snow the signal will be constant, in a powder cloud

the signal will be very low since no light from above can reach the sensor

and the density is usually too low to significantly reflect light, and above

the snow a high level will be detected due to ambient lighting.

Despite the wide spread use of opto-electronic sensors there appears

to have been little work done on how these sensors can be applied to

two-dimensional measurements. In (McElwaine and Tiefenbacher, 2003)

a detailed analysis is developed for two element sensors and the standard

cross-correlation algorithm is analysed in detail. The main results of this

work are that the measured velocities are consistently too high by

v2
y + T 2a2

x + T 2a2
y

vx

(1)

where vx is the velocity parallel to the sensor, vy the perpendicular ve-

locity, ax and ay the corresponding accelerations and T the width of the

correlation window. The paper also shows that T must be sufficiently

large so that Lc/(Tv) is small, where Lc is the correlation length of the

snow, in order that the minimum of the cross-correlation can be located

and that Lcvy/(Lv), where L is the sensor element separation, must be

small so that there are correlations between the sensor elements. These

requirements that the bias is low, and that the correlation exists and

can be found cannot be simultaneously satisfied unless vy/vx, Tax/vx

and Tay/vx are all small. A novel analysis method is briefly presented

that changes the time leading to acceleration errors T , the width of the

correlation window, to L/vx the transit time over the sensor. This dra-

matically reduces the acceleration induced bias, but the bias from vy



cannot be eliminated satisfactorily from a one-dimensional sensor. This

paper begins by discussing how a four element sensors will perform with

different flow fields. This insight is used to develop a continuous esti-

mation procedure for two-dimensional velocity which is introduced and

analysed.

For convenience in this paper we ignore discretisation errors in time

and regard functions as continuous. This simplification can be made as

long as the signals are properly filtered before digitisation so that there

are no frequencies higher than the Nyquist frequency (half the sample

frequency). Continuous functions are then defined by their Fourier in-

terpolation.

2 Interpretation of Lag Times

2.1 Effect of Acceleration

One of the simplest situations is shown in figure 1. An edge is moving

past four photo-transistors with centres at xi. Only the velocity and

acceleration normal to the edge, that is in the direction n̂, can be re-

solved. This is known as the aperture effect (Jähne, 1997) (Chapter 13).

We write v = n̂ · v and similarly for the acceleration a = n · a. If a

is constant, then the arrival time of the edge at each sensors τi will be

given by

y + vτi + aτ2
i /2 = n̂ · xi (2)

There are four equations, one for each sensor, and four unknowns, which

are v the normal velocity, a the normal acceleration, y the position of the



edge at t = 0 and n̂ the normal direction to the edge. A convenient choice

of coordinates is n ·x1 = L/2 cos θ, n ·x2 = −L/2 cosθ, n ·x3 = L/2 sin θ

and n · x4 = −L/2 sinθ so the the diagonal length between the sensors

is L. Equation 2 for each i can now be solved to give

θ = φ + tan−1

(

λ2 tan 2φ

1 − λ2

)

,

v = −L

δ

4λτ/δ + cos(2φ)
√

cos(2φ)2 − 2λ2 cos(2φ)2 + λ4
,

a =
L

δ2

4λ
√

cos(2φ)2 − 2λ2 cos(2φ)2 + λ4
,

y = L
16λτ2 + 8τδ cos(2φ) − 2λδ2 − λ3δ2

8δ2
√

cos(2φ)2 − 2λ2 cos(2φ)2 + λ4)
,

(3)

where the following auxiliary variables have been defined

τ = (τ1 + τ2 + τ3 + τ4)/4,

δ1 = τ1 − τ2,

δ2 = τ3 − τ4,

δ =
√

δ2
1 + δ2

2 ,

φ = tan−1(δ2/δ1),

λ =
τ1 + τ2 − τ3 − τ4

δ
.

(4)

Using y, v and a from eqs. 3 we know that at time t the position of the

edge projected in the direction n̂ is y + vt + 1/2at2 and the velocity is

v + at. A natural choice is to calculate the time t0 when the edge is over

the centre of the sensor and then calculate the velocity at this time. This



gives a quadratic equation for t0 which has the following solution.

t0 = τ − δ

4

λ(λ2 + 2) sgn(cos 2φ)

| cos 2φ| +
√

cos(2φ)2 + 2λ2 + λ4
. (5)

This has been written so that the correct solution is chosen regardless of

the sign of cos(2φ). The velocity at this time is

v(t0) =
L

δ

√

cos(2φ)2 + 2λ2 + λ4

cos(2φ)2 − 2λ2 cos(2φ)2 + λ4
. (6)

The acceleration a and angle θ, given by eqs. 3, are both independent of

time in this model. Thus these two equations along with eq. 6 can give

an estimate of the flow properties at the time t0 given by eq. 5.

There are several salient features of these equations. First they are

exact for all accelerations, angles and velocities. The mean time τ only

occurs in eq. 5 specifying the time at the centre of the measurement. The

angle, velocity and acceleration only depend on the differences between

the lag times τi. To understand these equations it is helpful to invert

them.

λ =

[√

1 +
√

1 − ε2 sin2 θ −
√

1 +
√

1 − ε2 cos2 θ

]2

2 −
√

1 − ε2 cos2 θ +
√

1 − ε2 sin2 θ
≈ 1/4ε cos2θ + O(ε3)

δ1 =
L

v

√
2 cos θ

1 +
√

1 − ε2 cos2 θ
≈ L cos θ

v

[

1 + 1/8ε2 cos2 θ + O(ε4)
]

,

δ2 =
L

v

√
2 sin θ

1 +
√

1 − ε2 sin2 θ
≈ L sin θ

v

[

1 + 1/8ε2 sin2 θ + O(ε4)
]

,

(7)

where v is the velocity at the centre point and ε = aL/v2 is the relative

velocity change over the size of the sensor. For ε > 1 the velocity can



change direction so that the edge will not reach the sensor for certain

angles, and this is shown in the above equations by the square roots

becoming imaginary. By considering small relative accelerations the na-

ture of λ as a measure of relative acceleration and δ1 and δ1 as velocities

along the axis is clear. The above expansions in ε are uniformly valid

for |ε| < 1, but the inverse expansions treating λ as a small parameter

breakdown when cos 2θ is small. This is because when the edge is moving

parallel to the sides of the square it is no longer possible to calculate the

acceleration. This problem will be expanded upon when we discuss the

errors.

To calculate the effect of errors in the four τi we assume that they

are random variables with mean µi and independent mean squared er-

rors with variance σ2. These errors arise from quantisation, statistical

fluctuations, electronic noise and deviations by the reflectance field from

our model. Allowing the errors to be dependent only effects the results

by a small factor and is not important.

Consider an estimate of some property ĝ = g(τi). The mean squared

error about the exact value g(µi) can then be calculated as follows.

V [f̂ ] = E[(ĝ−g)2] = E





(

∑

i

(τi − µi)
∂g

∂τi

)2


 =
∑

i

(

∂g

∂τi

)2

E[(τi−µi)
2] = σ2

∑

i

(

∂g

∂τi

)2

(8)

Using this formula for each of v̂, â and θ̂ the errors can easily be

calculated. The expressions are rather long however so we only consider



the case of small ε and expand.

V [v̂] =
σ2v4

L2

[

2 + ε2
4 + 9 cos2(2θ) + 5 cos4(2θ)

4 cos2(2θ)
+ O(ε4)

]

V [θ̂] =
σ2v2

L2

[

2 + 5/4ε2 sin2(2θ) + O(ε4)
]

V [â] =
σ2v6

L4

[

64

cos2(2θ)
+ ε2

2(13 cos(2θ)2 − 16)

cos2(2θ)
+ O(ε4)

]

(9)

These equations show that there is a very strong dependence of the error

on the angle for the acceleration and the velocity. For small cos(2θ)

the expansions break down and the errors can be arbitrarily large in

calculating v and a. This breakdown occurs for any size of ε though the

equations are not included here. Different estimations that avoid this

breakdown will be discussed in the following subsections. These results

also show that the size of the errors is determined by the dimensionless

grouping σv/L. This is exactly the uncertainty one would expect if the

sampling period is σ and the lag times τi can be located to this accuracy.

If this is the case then the larger L is the smaller the errors will be. In

general however, this is wrong for two reasons. If a feature or edge is

diffuse the lags can be calculated with a precision that is much greater

than the sampling period. Also as L increases the correlation between

the sensors will decrease and may disappear, so that σ increases without

bound. A different approach is needed to include these effects, which will

be discussed later. First however two different modelling assumptions

will be introduced.



2.2 Effect of Curvature

The previous subsection considered the case when the curvature of the

flow was constant over the scale of the sensors but the velocity was al-

lowed to vary. In this subsection we consider the case of constant velocity,

but with curvature. This would correspond to the case where the size

of the sensor is comparable with that of the particles. A four element

sensor does not give enough information to resolve particle centre, cur-

vature and velocity as this has five unknowns, but it is possible to solve

for the normal velocity. The four equations for the lags at each sensor

are

|y + vτi − xi|2 = R2 (10)

where y is the centre of curvature at t = 0 and R is the radius of

curvature. using the normal approximation so that y = yn̂ and v = vn̂

and the same definition of the sensor element sensors xi the equation for

each lag time is

(y + vτi − n̂ · xi)
2 + (m̂ · xi)

2 = R2 = 1/κ2, (11)

where m̂ is the unit vector normal to n̂ For a straight edge R is infinite

so it is more convenient to work with the curvature κ = 1/R.

The four equations can be solved to give

v =
L

δ
(12)

θ = φ (13)



y = −L
τ

δ
+ L

cos(2φ)

4λ
(14)

κ =
4λ

L
√

cos2(2φ) + 2λ2 + λ4
(15)

These are considerably simpler than those involving acceleration because

the curvature gives a linear time shift and thus has no effect on the

velocity or normal angle. The effect of acceleration is nonlinear and

more complicated. In the case of small acceleration, the results give the

same estimates for v and θ. Since this model includes no acceleration

the velocity and angle estimate are for all times. A sensible choice is to

regard them as applying at the mean time τ .

If we use eq. 12 as our estimate v̂, and eq. 13 as our estimate θ̂, then

the errors in the estimates can be calculated as before. They are

V [v̂] =
2v4σ2

L2

V [θ̂] =
2v2σ2

L2

(16)

These equations are exact and have no dependence on angle or curvature.

Thus the velocity and normal angle can be equally well calculated in any

direction. The estimates for the errors in κ and y do depend on the

angle and are also unstable for small cos 2θ. Thus again showing that

the sensor will be most effective when aligned with the diagonal in the

flow direction.

Suppose now we use the estimates given by eq. 12 and eq. 13 in the

case of acceleration. The total squared error will now consist of a bias



term and an uncertainty in τ term. The bias errors are

v̂ − v =
vε

4 − 2
√

1 − ε2 cos2 θ − 2
√

1 − ε2 sin2 θ
− v

= −1/16vε2[1 + cos2(2θ)2] + O(ε4)

θ̂ − θ = tan−1



cos(θ) sin(θ)

√

1 +
√

1 − ε2 cos2 θ −
√

1 +
√

1 − ε2 sin2 θ

sin2 θ
√

1 +
√

1 − ε2 cos2 θ + cos2 θ

√

1 +
√

1 − ε2 sin2 θ





= −1/32ε2 sin(4θ) + O(ε4)

The variance of these estimates can also be calculated as before, but is

now much simpler than for the unbiased estimates including acceleration.

V [v̂] =
σ2v4

L2

2ε4

(4 − 2
√

1 − ε2 cos2 θ − 2
√

1 − ε2 sin2 θ)2
(17)

=
σ2v4

L2

[

2 − 1/2ε2(1 + cos2(2θ)) + O(ε4)
]

(18)

V [θ̂] =
σ2v2

L2

2ε2

4 − 2
√

1 − ε2 cos2 θ − 2
√

1 − ε2 sin2 θ
(19)

=
σ2v2

L2

[

2 − 1/4ε2(1 + cos2(2θ)) + O(ε4)
]

(20)

These mean squared errors do depend on the angle θ, but they are always

finite, so provided that the velocity does not vary too much over the size

of the sensor so that ε is small, the estimators derived from the curvature

model in eqs. 12 and 13 will be more accurate. Only if the flow is very

closely aligned with the sensor and accelerations are very large and the

curvature can be neglected, will the estimators based on the acceleration

model prove better.



2.3 Closest approach

In this subsection we consider another interpretation of the lag times

when there is structure in the flow field over length scales smaller than the

sensor size. In the next section when the complete statistical description

is given this is also seen to arise from averaging over many edge events.

We consider a trajectory given by (τ − t)v + 1/2(τ − t)2a so that it

passes through the centre of the sensor. The lag time τi for sensor i is

the point of closest approach, so that

([v + (τ − t)a] · [(τi − t)v + 1/2(τi − t)2a − xi] = 0. (21)

Each of these equations is a cubic in τi which can be solved exactly, but

for simplicity we only consider series solutions for small acceleration a. In

this case we interpret θ as the direction of the velocity v, let a = |a| and

let ω be the angle between v and a, so that a · v = av cosω. Expanding

in terms of the non dimensional ε and substituting the τi into eqs. 4

δ =
L

v
+

Lε2

128v
[4 − 4 cos(4θ) + 8 cos(2ω) − cos(4θ + 2ω) + 9 cos(4θ − 2ω)] + O(ε4)(22)

φ = θ + 1/128ε2[4 sin(4θ) + sin(4θ + 2ω) − 10 sin(2ω) − 9 sin(4θ − 2ω)] + O(ε4)(23)

τ = t − ε
L cosω

16v
ε + O(ε3) (24)

λ = −1/8ε[3 cos(2θ − ω) − cos(2θ + ω)] + O(ε3) (25)

Eq. 24 shows that the mean time is only effected to lowest by acceleration

in the direction of the velocity as would be expected. Substituting these

results into the simple estimators v̂ = L/δ and θ̂ = φ we can calculate



the bias and variance as before.

v̂ − v = −1/128ε2v[4 − 4 cos(4θ) + 8 cos(2ω) − cos(2ω + 4θ) + 9 cos(4θ − 2ω)] + O(ε4) (26)

θ̂ − θ = 1/128ε2[(4 sin(4θ) + sin(2ω + 4θ) − 10 sin(2ω) − 9 sin(4θ − 2ω)] + O(ε4) (27)

V [v̂] =
σ2v4

L2

[

2 − 1/16ε2[4 − 4 cos(4θ) + 8 cos(2ω) − cos(2ω + 4θ) + 9 cos(4θ − 2ω)] + O(ε4)
]

V [θ̂] =
σ2v2

L2

[

2 − 1/32ε2[4 − 4 cos(4θ) + 8 cos(2ω) − cos(2ω + 4θ) + 9 cos(4θ − 2ω)] + O(ε4)
]

What these results show are that under the assumptions of this section

the simple estimators for v (eq. 12) and θ (eq. 13) also perform well.

That is, the bias and the variance will be small for all angles provided

that the velocity does not change too much across the width of the sensor

and the lag times can be accurately calculated. In the next section we

describe how to calculate the lag times and perform a complete statistical

analysis of the approach.

3 Continuous Time Estimation

The continuous time estimation approach was described briefly in (McEl-

waine and Tiefenbacher, 2003) for two element sensors. In this paper we

show how the same method can be applied to four element sensors. The

field of reflectance f(x) is regarded as constant in time and corresponds

to the value one element of our sensor would output if placed at a lo-

cation x. For simplicity we do not include temporal variation in f , but

this is not significant as the differences are very similar to changes in

velocity. Let fi(t) be the signal received by sensor i at time t which is

F (y(t)) where y(t) is the relative trajectory of the centre of the sensor to



the flowing medium. The method consists of minimising the Lagrangian

L =
∑

i

∫

[fi(τi(t)) − f(t)]2 dt + 2γ
∑

i

∫ (

dτi(t)

dt

)2

dt. (28)

The variables to solve for are τi, the lags at each sensor, and f(t), the

estimated underlying value at the centre of the sensor. The first terms

of L penalises the discrepancy between the lagged sensor signals and

the estimated signal f . If there were no constraint on the lag functions

then these could be made zero but the lags would be unphysical. For

this to be well posed, certainly the τi(t) must have no frequencies higher

than the sampling frequencies. In fact we expect only slow changes

in the velocity so a simple term that enforces this has been chosen,

which has nice features. It is analytically tractable and corresponds

to linear interpolation when there is little information present in the

signal. γ is a parameter that determines the strength of this smoothing.

At least one additional constraint on the τi(t) is also necessary. Using

our results from the previous section which show that estimators based

only on δ1 = δ cosφ and δ2 = δ sinφ give good results we use τ1(t) =

t + δ1/2, τ2(t) = t − δ1/2, τ3(t) = t + δ2/2 and τ4(t) = t − δ3/2. It

would also be possible to try to calculate curvature, but imposing an

additional constraint simplifies the numerical implementation and means

the the residuals fi(τi(t)) − f(t) contain much useful information about

the accuracy of the method. The Lagrangian (eq. 28) then becomes

L = 1/2

∫ {

[f1(t + δ1/2) − f(t)]2 + [f2(t − δ1/2) − f(t)]2 + [f3(t + δ2/2)− f(t)]2

+ [f4(t − δ2/2) − f(t)]2 + γ

(

dδ1)

dt

)2

+ γ

(

dδ2)

dt

)2}

dt (29)



where the dependence of δi on time has been dropped. Solving this

variational problem is straightforward. The estimated field value f is

simply the average of the lagged measurements

f(t) = 1 − 4 [f1(t + δ1/2) + f2(t − δ1/2) + f3(t + δ2/2) + f4(t − δ2/2)] .(30)

If there is additional knowledge about the underlying field f this could

be incorporated here, but failing that the mean field can be eliminated.

The Euler-Lagrange equations for δi are then

γδ̈1 = ḟ1(3f1 − f2 − f3 − f4)/4 − ḟ2(3f2 − f1 − f3 − f4)/4 (31)

γδ̈2 = ḟ3(3f3 − f1 − f2 − f4)/4 − ḟ4(3f4 − f1 − f2 − f3)/4 (32)

where each fi is evaluated at the appropriate lagged time t ± δi. This

can be solved efficiently numerically using an implicit multi-grid scheme.

A rigorous analysis of these equations will not be given here, but an

indication of the nature of the solutions and the errors involved will be

briefly discussed. The reading at each sensor fi(t) = f(xi−y(t)). Taylor

expanding each fi in eq. 31 to lowest order about −y(t) gives

γδ̈1 = 1/2(v · ∇f)2δ1 − 1/2L(v · ∇f)(x̂ · ∇f) (33)

γδ̈2 = 1/2(v · ∇f)2δ2 − 1/2L(v · ∇f)(ŷ · ∇f) (34)

where x1 − x2 = Lx̂ and x3 − x4 = Lŷ. The equations for δi are now

decoupled. letting g(t) = |∇f(−y(t))|2, the signal power, and g(t)n̂(t) =



∇f(−y(t)), the equation for δ1 can then be written

δ̈1 =
g(v · n̂)2

2γ

[

δ1 − L
(x̂ · n̂)

(v · n̂)

]

. (35)

The right hand side of this vanishes when δ1 = L (x̂·n̂)
(v·n̂) , which is precisely

the condition (neglecting acceleration) in eq. 7, that is the lag time for

the arrival of an edge with normal direction n̂ travelling with velocity

v. Departures away from this value are governed by the size of g(v·n̂)2

2γ
.

When this is large, δ1 will closely match the lag. When it is smaller,

larger deviations will be allowed and δ1 will be an average of this and be

approximately linear. This equation can be analysed by splitting up the

multiplier into its mean part and its varying part. If f is isotropic, then

g and n̂ are independent, and n̂ is distributed uniformly on the unit

circle. So defining α2(t) = E
[

g(v·n̂)2

2γ

]

= v2(t)E[|∇f |2]
4γ

, which depends

only weakly on t through changes in v, and β(t) = g(v·n̂)2

2γ
− α2. Eq. 35

becomes

δ̈1 − α2δ2
1 = βδ1 − Lg(x̂ · n̂)(v · n̂). (36)

The Greens function for the left hand side (that decays for large |t|) is

G(s, t) = − e−α|s−t|

2α
, neglecting variation in α. So we can write

δ1(t) =

∫ ∞

−∞

e−α(t)|s−t|

2α(s)
[Lg(s)(x̂ · n̂(s))(v(s) · n̂(s)) − δ1(s)β(s)] ds

(37)

This equation can be used to calculate the statistics of δ1(t). It is mostly

easily understood in the frequency domain. The Fourier transform of

the Greens function is α2/(α2 + ω2), that is, it is a low pass filter with

cutoff frequency α. If the dominant frequencies in n̂(t) are above this



then they can be averaged to give

δ1(t) ≈
∫ ∞

−∞

α/2e−α|s−t|L
x̂ · v(s)

v2(s)
ds ≈ L

x̂ · v(s)

v2(s)
(38)

The approximation for δ2 is similar, so that up to terms in acceleration,

we have the same results as in eqs. 22 and 23, thus the velocity can be

estimated as

v = L
x̂δ1 + ŷδ2

δ2
1 + δ2

2

. (39)

The above heuristic justification can be made precise and the errors

quantified, but the analysis is complicated and the brief discussion above

contains the salient features.

Though the analysis and implementation for the continuous method

described in eq. 28 are more complicated than for the traditional ap-

proach of calculating lags at fixed times using a fixed window there are

several important advantages of this approach.

1. The primary errors due to acceleration enter through the time scale

defined by the traverse size of the sensor L/v, not the window width

needed to calculate the cross correlation. The acceleration errors

will therefore be an order of magnitude smaller. The smoothing

needed to overcome the aperture effect acts as a low pass filter

removing high frequencies in the velocity, rather than introducing

bias. If there is prior information about the wavelengths in f(x),

for example if the particle size distribution is known, the regulari-

sation term γδ̇2 (equivalent to ω2 in the frequency domain) can be

changed so as to produce any desired filter.



2. The effective smoothing width 1/α depends inversely on the signal

strength, so that velocity is automatically interpolated where the

signal is weak and errors are reduced where the signal is strong.

3. The cross correlation approach can fail by finding an incorrect

global maximum that is unrelated to the lag time (McElwaine and

Tiefenbacher, 2003), resulting in effectively infinite expected mean

squared error. The errors in this continuous approach will only in-

crease gradually as the signal degrades and the mean squared error

will always be finite until there is total lack of correlation.

4 Design Criteria for Sensors

The design of a sensor to calculate velocities depends on several factors.

In order to calculate velocities it is necessary to average over several

incident edges at different angles, but as the averaging time increases,

higher frequencies in velocity are filtered out. Thus maximum sensitiv-

ity will be achieved by considering the smallest wavelengths, Lc, that

exist in the reflectance field f(x). This will be similar to the size of the

smallest particles. For the sensor elements to detect these wavelengths

the diameter of the elements should be the same or smaller. The area

of the element acts as a low-pass spatial filter, so in order to satisfy the

Nyquist criterion and prevent aliasing, the sensors spacing should be the

same. That is, there should be no gaps between the active parts of the

elements that are larger than the smallest wavelength. For flowing snow

the smallest particles may be less than 1 mm in size and it may not be

possible to build such a small sensor, though this might be achievable us-



ing fibre optic cables to connect to the photo-transistors. The sampling

frequency should also be chosen to satisfy the Nyquist requirement. The

highest frequencies that will be observed are ≈ vmax/(d + LC), where

d is the diameter of the active part of a sensor element. (If the sensors

elements are not round this should be the smallest dimension through

the element centre). The sampling frequency should be chosen to be at

least twice this, but going much higher will add no further information.

The lag times can easily be calculated with super-resolution (accuracy

greater than the sampling frequency) by interpolating (over-sampling)

the signal. Finally if the flow has a preferred direction, such as parallel

to the ground it is best to orient this as shown in fig. 2, which is opti-

mised for horizontal or vertical directions. This has several advantages.

Most of the errors are minimised in this direction. The acceleration or

curvature can be calculated as the same part of the flow passes over

sensors at three different times. The spatial aliasing also depends on

the angle as it is less likely that particles will pass through the gaps.

Another countermeasure, if spatial aliasing cannot be prevented, is to

reduce this vertical dimension Ly as shown in fig. 3. This will reduces

most errors when |vx| > |vy|, but increase errors when the velocity is

closer to vertical.

These design criteria can easily be summarised in terms of the power

spectrum (the energy at different wavelengths) of the reflectance field

f . Energy at wavelengths less than the averaging diameter d of each

photo-transistor is filtered out. Energy at wavelengths between d and

the sensors spacing L appears as noise. Energy at wavelength greater

than the spacing L is the useful signal energy. Since there are also



fixed sources of error, the maximum signal to noise ratio is obtained by

having d = L = Lc/2. The sampling frequency needs to be at least

2Lc/v. For laboratory chute experiments with snow Lc ≈ 1 mm and

v < 10 m−1, so that the sampling frequency should be around 20 KHz

and the sensors 1 mm in size. For a real snow avalanche the sampling

frequency would need to be higher — around 50 kHz. Photo-transistors

are generally larger than 1 mm, but by using fibre optic cables, or a ccd

chip rather than photo-transistors, it should be possible to build such

a sensor. If existing sensors are to be used the best choice would be to

mount four photo-transistors as close together as possible, perhaps with

a defocussing lens in order to spatial average over the sensor spacing L.

5 Conclusions

There are many possible sources of error in calculating velocities from

opto-electronic sensors. This paper has described how the careful design

of such instruments and analysis procedures can reduce and quantify the

errors. Further improvements could be made by investigating in detail

the nature of the reflectance field f(x) and constructing a parametric

model that incorporates information such as the particle size distribu-

tion. In a flow of identical granular particles this would be straight-

forward and estimates of the local flow density could easily be made,

by reducing the smoothing γ and calculating individual normal veloc-

ities and angles, rather than attempting to find the velocity averaged

over several particles and orientations. Using a sensor with five elements

would allow the curvature and size of the particles also to be reliably



estimated, which would be important for a more complicated material

such as snow when the sizes are not known.
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