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Abstract

In wind transport of snow horizontal momentum is extracted from the mean wind flow and transfered
to the snow grains. Upon colliding with the surface the grains can bounce and eject further grains in a
process known as splashing. How efficiently the horizontal momentum is converted to vertical momentum
in the splash process is the determining factor for mass transport rates. This paper discusses wind tunnel
experiments performed to calculate the splash function for snow particles. The data is used to develop a
new splash function. Particular care is taken to include correlations in the data such as between ejection
velocity and ejection angle. The new splash function includes these correlations and its parameters are
related to physical properties of the bed and snow.
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1 Introduction

Saltation was divided up by (Bagnold, 1941) into four distinct subprocesses: aerodynamic entrainment,
the grain trajectory, the splash process and wind modification. The splash process is when a grain impacts
the bed and may ricochet and eject additional particles. This process is critical in determining the mass
flux and response times of a saltating system. The main contribution of the wind is to accelerate the grains
horizontally, at least at friction velocities where suspension is negligible, and without the conversion of this
to vertical motion in the splash process saltation would rapidly die out. Indeed in equilibrium saltation
aerodynamic entrainment may not occur at all (Doorschot and Lehning, 2002) and the population of
saltating grains is only maintained by the splash process. An early analytic investigation of the splash
function was performed by (Rumpel, 1985), who considered idealised collisions between regularly packed
discs in two dimensions. (Willetts and Rice, 1985) have performed detailed experiments on the splash
function for sand. (Nalpanis and others, 1993) summarised many experiments and showed that they were
consistent and that there was agreement with experiments on snow (Araoka and Maeno, 1981).

∗jnm11@amtp.cam.ac.uk



Despite the extensive work that has been carried out, published splash functions suffer from many
difficulties both theoretical and practical. In this paper we will use the term splash function to refer to
the jpdf (joint probability density function) of the velocities after impact given the impact velocity, thus

p(v,v1,v2, . . . |u) = fs(v,v1,v2, . . . ,u), (1)

where u is the velocity of the impacting grain, v the velocity of the same grain after the collision and
vi are the velocities of any grains which reach a certain height above the bed after the collision. This
definition ensures that the function is well defined and highlights the fact that a certain separation is
necessary if one wishes to treat the collision as a discrete process rather than a continuous process in which
energy is radiated into the bed as a compression wave. Many published splash functions use unbounded
distributions for splash velocities so that the energy of the outgoing particles can be greater than that of
the incoming. A physically sensible splash function should satisfy

fs(v,v1,v2, . . . ;u) = 0 if v2 +
∑

i

v2
i > u2, (2)

so that energy is never created. The splash function should respect appropriate symmetries and should
be defined for all angles and velocities. For example the dependence on angles should only enter through
trigonometric functions so that it is periodic. Of particular importance is correctly accounting for the
dependences and correlations between the variables. For example it is not sufficient to calculate separate
pdf’s (probability density function) for ejection angle and ejection velocity, unless it is shown that they
are independent, which they are not. The correlations between the variables are of course critical in
determining the efficiency with which horizontal momentum is converted into vertical movement. The
splash function, as defined in this paper, should have no dependence on the wind properties. This is
because collisions in the bed occurs over such small times that aerodynamic forces are unimportant.
The observed splash velocities will however depend on the wind properties since this determines the
distribution of the impact velocities u. If fi(u) is the distribution of impacting particles the observed
splash distribution will be

∫

fs(v,v1,v2, . . . ;u)fi(u)du. (3)

This is a significant complicating factor in estimating the splash function that needs to be properly
accounted for.

All published splash functions (to the authors’ knowledge) separate the splash function into a binary
probability, for whether or not a particle is observed, and then a conditional distribution function for its
velocity. This is a useful empirical approach, but it is objectionable theoretically. It is not at all clear
that the distribution of ejection velocities should be bimodal. A much more natural approach is to have
a unimodal ejection velocity pdf, but then regard particles that have negative vertical velocities as being
absorbed by the bed.

An important practical difficulty is due to censoring of the data. Most experiments have observed
collisions in a two dimensional slice illuminated by a light sheet. If the particles have a large velocity
component normal to this plane they will not be observed. Another very important censoring mechanism
is that particles can only be observed if they move clear of other particles in the bed. The length of a
particle streak in a video frame is proportional to its speed, so that slow particles will leave short streaks
and also be harder to observe. For example suppose that due to roughness in the bed, the grain size
and the pixel size only particles that rise up h = 2 mm are observed. This corresponds to a speed of√

2gh = 0.2 ms−1, so in this case no particles that are splashed with a speed less than this would be
observed. Even if a particle is observed its measured velocity will be reduced by

vy −
√

v2
y − 2gh ≈ gh

vy

+ O

(

g2h2

v3
y

)

. (4)

A carefully designed experiment should include an analysis of the importance of these effects.
The most serious problem in developing a sound splash function is the lack of data. How much data

would be necessary to accurately map the splash function? Suppose we consider just the impacting
particle so that there are six degrees of freedom (three for the impact velocity and three for the ejection
velocity). If we divided up each variable into ten ranges and wanted on average ten samples per region
be would need 107 samples to be able to perform a chi-squared test of distribution. If we assume that the
bed is isotropic, that is only the speed and angle to the vertical of the incoming particle are important
then this reduces the free variables by one so only 106 events would be necessary. If we only wanted



to consider the behaviour in a plane, and this is all we can do with two dimensional data, another
degree of freedom would go and 105 events would be sufficient. A fully automated experiment that could
measure this number of events would be extremely interesting, but in this paper we are restricted to
datasets containing O(103) elements, so a full mapping and hypothesis testing on the splash function
is not possible and will not be attempted. Instead we will examine the correlations between different
variables and attempt to make a choice that simplifies the problem. Given the small size of the datasets
we will emphasise developing a theory with very few parameters that fits the data approximately.

2 Method

This paper uses data from experiments described in (Sugiura and Maeno, 2000). Experiments were
conducted in two wind tunnels in Japan. Compact snow, which had been kept for a year at −15 oC,
was used in the wind tunnel of the Institute of Low Temperature Science, Hokkaido University, whereas
fresh snow was used in the wind tunnel of the Shinjo Branch of Snow and Ice Studies, National Research
Institute for Earth Science and Disaster Prevention. The compact snow had mean diameter 0.35 mm
with standard deviation 0.28 mm. The fresh snow was dendritic with dimensions of 0.5–5.0mm. The
experiments with the fresh snow were carried out with a friction velocity of 0.17 ms−1 and the experiments
with compact snow were carried out with friction velocities of 0.19 ms−1 and 0.25 ms−1. At the downwind
end of the wind tunnel impacting and ejecting grains were illuminated by 10 mm wide laser sheet cut
with a rotary shutter at intervals of 1 ms for natural snow and 0.5 ms for fresh snow. The illuminated
particles were recorded using a video camera and the velocity before and after impact calculated from
the trajectories.

3 Results

The software for analysing the trajectories and calculating the velocities calculates values quantised
along the vertical and horizontal axis of the camera. For compact snow there were 1366 usable1 (out
of 1385) collisions and the velocities were quantised at an angle rotated by 0.83 o spacing 0.079 ms−1

corresponding to pixel size of 0.079 mm. For fresh snow there were 1629 usable collisions (out of 1634)
velocities were quantised at an angle rotated by 0.12 o spacing 0.063 ms−1 corresponding to pixel size of
0.13 mm. Errors are presumed to be limited to the quantisation error. Velocity is calculated from the
trajectories extrapolated to the bed surface so no sampling bias is expected in the data as would occur
if the velocity was calculated at a height above the bed. When no grain was observed to be ejected from
the bed the speed was taken to be 0.

The observed data are shown in figures 1, 2, 3 and 4. The two figures of ejection velocities show that
there are very few observed non-zero velocities within the ellipse

(vy/.25)2 + (vx/.5)2 < 1. (5)

This may be correct, but it is much more likely that in fact there were particles with these velocities but
that they were unobserved, that is they were censored. This is for the reasons previously discussed in the
introduction, which are that if a particle is moving slowly it only leaves a short streak on a video frame
which is less likely to be observed, and also that a particle must move up high enough from the bed to
no longer be obscured by other grains. This assumption will be made for the rest of the paper.

4 Theory

In this section we will consider the velocity pdf of only the ejected particle with the largest velocity
and we call this the ricochet function fr(v,u). This can be obtained from the complete splash function
by integrating out the velocities vi of the ejected particles. In nearly all cases we expect this to be the
impacting particle but this is not necessary. We choose this approach to describe the splash function since
we imagine a cascade of collisions between particles in the bed with the energy, and velocities, decreasing
after each one. Thus it is natural to regard the smaller ejection velocities as being dependent on the
larger ejection velocities rather than vice-versa.

1Nonusable trajectories where those were the ejected particles velocity could not be calculated or was greater than the
impact particles velocity, presumably due to a large component of velocity along the (unobservable) axis of the camera
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Fig. 1: Impact velocity for compact snow. Area is proportional to number. Total is 1366
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Fig. 2: Ejection velocity for compact snow. Area is proportional to number. Total is 1366
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Fig. 3: Impact velocity for fresh snow. Area is proportional to number. Total is 1629

−1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

v
x
 (m s−1)

v y (
m

 s
−

1 )

Fig. 4: Ejection velocity for fresh snow. Area is proportional to number. Total is 1629



4.1 Normal Impulse Model
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Fig. 5: Schematic of two ricochets

There is a wide choice of different variables that can be used to describe the velocities of a particle
before and after a collision: Cartesian or polar coordinates can be used, various restitution coefficients
and rotations can be defined. They are all equivalent since a theory defined using one set of variables can
be transformed into another. However some choices of variables may have fewer correlations and have a
simple physical interpretation. For example, if the velocities after a collision are roughly proportional to
the impact speed, then restitution coefficients will be independent of the impact speed and an important
simplification is obtained.

Figure 5 shows two collisions of grains off a surface. If the grain is spherical, the surface is hard and
smooth and the surface properties can be described by a restitution coefficient e and coulomb friction
coefficient µ then it is straightforward to calculate the ejection linear and angular momentum from the
impact linear and angular momentum. Of course these criteria are not satisfied for a grain impacting a
bed, but we will show that regarding a collision in these terms defines two useful variables, which we call
impulse normal n̂ and impulse restitution en. We define these as the surface normal and restitution that
would result in the observed velocities for an ideal collision with zero friction. Thus

v = (1 − n̂n̂t)u + enn̂(n̂ · u) = u− (1 − en)(n̂ · u)n̂. (6)

This can be inverted to give

n̂ =
v − u

|v − u| (7)

en =
n̂ · v
n̂ · u = − v2 − v · u

u2 − v · u . (8)

Note that the e lies in the range [−1, 1]. The presence of surface friction will act to rotate the impulse
normal away from the surface normal towards the incoming particle. The impulse restitution has a simple
interpretation as a ratio of masses. If the impacting particle has mass m and it collided with a particle
of mass M with restitution coefficient e then

en =
Me − m

M + m
. (9)

Thus we would expect that the upper limit on the observed en would be the true material restitution e.
Eq. 9 also shows that if the part of the bed the grain impacts consists of a group of grains joined by stiff
contacts, due to sintering for example, then M/m will be large and the impulse restitution will be close
to e. If however it hits a smaller grain on the top of a ripple so that M/m is small the grain will move
through and en will be close to −1. This also suggests how to apply the theory to grains of different
sizes. Since no information about the size of impacting grain was collected in these experiments we will
not pursue this idea. But if such data were to be collected it could easily be included by working with
the mass ratio rather than en.

4.2 Correlations

To see how the variables are correlated we calculated Kendall’s Tau coefficient for all variable pairs.
This is a non-parametric test that is sensitive to all monotonic correlations (Hollander and Wolfe, 1973).
Tables 1–3 show the number of standard deviations from 0 for Kendall’s tau normalised by the diagonals.
Positive values indicate positive correlations and negative values negative ones. Values small in absolute



impact parameters ejection parameters

ui θi ux uy ve θe vx vy e ex ey θn en
ui 1.00 -0.02 1.00 -0.38 0.48 0.02 0.27 0.37 -0.07 -0.05 -0.05 0.06 -0.01

θi -0.02 1.00 -0.02 -0.60 -0.03 -0.02 -0.00 -0.04 -0.02 -0.00 -0.03 -0.17 0.07

ux 1.00 -0.02 1.00 -0.38 0.48 0.02 0.27 0.37 -0.07 -0.05 -0.05 0.06 -0.01

uy -0.38 -0.60 -0.38 1.00 -0.25 0.00 -0.16 -0.18 0.06 0.03 0.06 0.09 -0.04

ve 0.48 -0.03 0.48 -0.25 1.00 -0.26 0.65 0.35 0.46 0.40 0.04 -0.40 -0.10

θv 0.02 -0.02 0.02 0.00 -0.26 1.00 -0.60 0.38 -0.39 -0.68 0.54 0.30 0.68

vx 0.27 -0.00 0.27 -0.16 0.65 -0.60 1.00 0.02 0.51 0.68 -0.20 -0.46 -0.40

vy 0.37 -0.04 0.37 -0.18 0.35 0.38 0.02 1.00 0.04 -0.16 0.59 -0.12 0.43

e -0.07 -0.02 -0.07 0.06 0.46 -0.39 0.51 0.04 1.00 0.71 0.06 -0.73 -0.13

ex -0.05 -0.00 -0.05 0.03 0.40 -0.68 0.68 -0.16 0.71 1.00 -0.21 -0.59 -0.41

ey -0.05 -0.03 -0.05 0.06 0.04 0.54 -0.20 0.59 0.06 -0.21 1.00 -0.15 0.63

θn 0.06 -0.17 0.06 0.09 -0.40 0.30 -0.46 -0.12 -0.73 -0.59 -0.15 1.00 0.01

en -0.01 0.07 -0.01 -0.04 -0.10 0.68 -0.40 0.43 -0.13 -0.41 0.63 0.01 1.00

Table 1: Kendall’s normalised Tau coefficient of correlation for different variable pairs for compact snow.

impact parameters ejection parameters

ui θi ux uy ve θe vx vy e ex ey θn en
ui 1.00 -0.12 1.00 -0.14 0.32 -0.02 0.23 0.19 -0.28 -0.19 -0.19 0.29 -0.06

θi -0.12 1.00 -0.12 -0.75 -0.03 0.01 -0.03 -0.01 0.08 0.04 0.05 -0.30 0.13

ux 1.00 -0.12 1.00 -0.14 0.32 -0.02 0.23 0.19 -0.28 -0.19 -0.18 0.29 -0.06

uy -0.14 -0.75 -0.14 1.00 -0.11 -0.00 -0.08 -0.08 0.05 0.03 0.03 0.15 -0.09

ve 0.32 -0.03 0.32 -0.11 1.00 -0.26 0.68 0.22 0.40 0.40 -0.03 -0.25 -0.24

θv -0.02 0.01 -0.02 -0.00 -0.26 1.00 -0.58 0.52 -0.25 -0.54 0.63 -0.03 0.77

vx 0.23 -0.03 0.23 -0.08 0.68 -0.58 1.00 -0.10 0.39 0.59 -0.30 -0.16 -0.53

vy 0.19 -0.01 0.19 -0.08 0.22 0.52 -0.10 1.00 0.02 -0.20 0.63 -0.23 0.48

e -0.28 0.08 -0.28 0.05 0.40 -0.25 0.39 0.02 1.00 0.72 0.12 -0.62 -0.20

ex -0.19 0.04 -0.19 0.03 0.40 -0.54 0.59 -0.20 0.72 1.00 -0.16 -0.40 -0.48

ey -0.19 0.05 -0.18 0.03 -0.03 0.63 -0.30 0.63 0.12 -0.16 1.00 -0.38 0.62

θn 0.29 -0.30 0.29 0.15 -0.25 -0.03 -0.16 -0.23 -0.62 -0.40 -0.38 1.00 -0.11

en -0.06 0.13 -0.06 -0.09 -0.24 0.77 -0.53 0.48 -0.20 -0.48 0.62 -0.11 1.00

Table 2: Kendall’s normalised Tau coefficient of correlation for different variable pairs for fresh snow.

ui impact speed
θi impact angle
ux impact horizontal speed
uy impact vertical speed
ve ejection speed
θe ejection angle
vx ejection horizontal speed
vy ejection vertical speed
e = ve/ui total restitution
ex = vx/ui x restitution
ey = vy/ui y restitution
θn = tan−1(uy − vy)/(ux − vx) impulse angle
en = v · (v − u)/(u · (v − u)) impulse restitution

Table 3: Definition of variables used in tables. 1 and 2



magnitude indicate lack of a monotonic correlation and suggest that the variables are independent. There
is a very important caveat in interpreting this data. No allowance has been made for separating out the
correlations in the impact velocities because of the lack of data, and this problem will not be further
discussed. Also correlation induced by censoring of the data will be ignored. A more detailed study
should carefully address these issues.

One can see for example that there is a strong correlation between the ejection vertical velocity
vy and the impact horizontal velocity for ux. It is also shown that there is large negative correlation
between the ejection angle and the total restitution and speed, which would have to be considered if
we were to construct a jpdf for them. The horizontal restitution and vertical restitution coefficients are
also highly correlated. Rather surprisingly ejection horizontal and vertical speeds do not appear to be
strongly correlated, at least for the compact snow. This is odd because there must be a strong negative
correlation, at least in collisions when little energy is dissipated, in order that energy is not created. A
very pleasing result is that the impulse angle and restitution are only very weakly correlated so we might
hope to model them as independent. There is also only a small correlation between them and the impact
velocity, and the impulse restitution does not dependent strongly on the impact angle. These statements
are all much less true for the fresh snow than the compact snow. We hope that this is due to greater
problems with censored data in the more dissipative fresh snow case.

This analysis of the correlations suggests that we base a theory on the impulse angle and impulse
restitution and that they are treated as independent. Since we are trying to find a simple approximate
theory and the correlations are low we assume that both are independent of the impact velocity and that
only the impulse angle depends on the impact angle.

Suppose that fn(n̂) is the distribution of surface normals over the bed. Then the distribution of
impulse normals will be approximately proportional to this but weighted by a factor −n̂ · û, where û is
the unit vector in the direction of the impacting particle. Friction during the collision will also weight
the distribution of n̂ towards −û as will shadowing effects by ripples. That is to say a particle sees more
of the surface that is normal to its motion. This suggests that the distribution of impulse normals should
be of the form

fθ ∝ (−n̂ · û)αfn(n̂). (10)

No direct measurements were taken of the surface properties so fn is unknown, but it would be very
interesting to try to measure this in future experiments. Instead we assume that it has the very simple
and isotropic form fn(n̂) ∝ (n̂ · ŷ)β . Thus we have

fθ ∝ (−n̂ · û)α(n̂ · ŷ)β (11)

This form is valid for three dimensions but since velocities normal to the light plane were not observed
we restrict the analysis to two dimensions which, ignoring censoring, is equivalent to integrating out this
direction (this changes β). The distribution then becomes

fθ(θn) ∝
{

cos(θn − θi)
α sin(θn)β θ ∈ [0, π/2 + θi]

0 θ ∈ [π/2 + θi, 2π],
(12)

with θi ∈ [0, π/2] being the impact angle to the horizontal and θn the impulse angle from the horizon-
tal measured clockwise. This distribution is similar to a Beta distribution but differs because of the
dependence on θi.

For the impulse restitution the natural choice of distribution is Beta since it is in the range [−1, 1].
For a less elastic material the upper limit should be taken as the coefficient of restitution or the theory
developed in terms of the apparent mass ratio (eq. 9). Since the correlations with impact velocity and
impulse angle are small we assume that the parameters are constant for all collisions and only depend on
the bed properties. Thus we take

fe(e) ∝ (1 − e)µ(1 + e)λ. (13)

Combining these distributions and including the Jacobian factor (which would be slightly different in
three dimensions) de dθ = dv/(u · (u − v)) the pdf for f(v) is

fv(v) =
N(α, β, µ λ, û)

u · (u − v)

(

u · (u − v)

u|u− v|

)α (−ẑ · (u − v)

|u− v|

)β (

u2 − v2

u · (u− v)

)µ (

(u − v)2

u · (u − v)

)λ

, (14)

where N is the normalisation factor, which does not have a simple closed form. If there were not the
censoring issue to contend with it would be straightforward to calculate the parameters independently for
angle and restitution. Instead eq. 14 is modified so that all negative vertical velocities and those falling



α β µ λ
compact snow 3.9 2.0 4.0 5.1

fresh snow 6.9 1.5 6.4 10.2

Table 4: Splash function parameters found using maximum likelihood estimation and assuming elliptical
censorship.
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Fig. 6: Observed impulse angle distribution compared to fitted distribution for fresh snow
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Fig. 7: Observed impulse restitution distribution compared to fitted distribution for fresh snow
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Fig. 8: Observed impulse angle distribution compared to fitted distribution for compact snow
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Fig. 9: Observed impulse restitution distribution compared to predicted distribution for compact snow
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Fig. 10: Impulse angle pdf for a range of impact angles.
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Fig. 11: Observed ricochet probability as a function of impact angle and speed



within the ellipse defined by eq. 5 are regarded as having velocity 0. The parameters were then found
using maximum likelihood estimation and are shown in table 4.

The figures 6, 7, 8 and 9 compare the predicted distributions and the observations. In each of these
figures the solid curve shows the predicted distribution if there were no censoring of the data, the left
hand histogram is the observed data, and the right hand histogram is the predicted observations with
censoring. The substantial effect of the censoring on the data is clear. In particular no impulse angles
less than half the impact angle will be observed as these result in negative vertical velocities after the
impact, so that a particle would be absorbed. It is of course possible to get much better fits to these
particular histograms by fitting directly to them, but these figures show the results of fitting the complete
distribution for each collision so that the dependence on the impact velocities and the correlations will
be correct.

Because of the construction of this splash function it can be extrapolated to angles outside of the range
of observation. Figure 10, shows the pdf of the impulse angle for a range of impact angles. Note that
this is symmetrical for a vertical impact angle. Figure 11 shows the probability of observing a ricocheting
particle as a function of impact speed and angle. At low speeds the elliptical censoring hypothesis
dominates, that is even if a particle bounces without losing energy it will not bounce high enough to
be observed. As the impact speed increases for shallow angles the probability tends towards one. For
steeper angles the probability tends towards the probability of a particle being scattered with a negative
vertical velocity so that it is captured by the bed. Due to the small range of impact angles observed
it is not possible to say whether these predicted probabilities of absorption are correct. Experiments at
steep impact angles would be very interesting for testing splash functions and could answer this question.
If it turns out that these predicted probabilities are too low, it may be necessary to allow the impulse
restitution to depend on the impact angle. This could be done by considering the effective mass ratio,
which one would expect to be larger for steep collisions. Another possible modification would be to allow
multiple collisions. That is a downwardly scattered particle would be allowed to collide repeatedly until
it scattered upwards or its energy had dropped below the observable level.

5 Ejected Particles
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Fig. 12: Predicted and observed number of ejected particles for compact snow

After a bed collision additional particles may be ejected and these were counted, though their velocities
were not measured. However, the number of ejected particles is only well defined if it is understood to
mean the number of particles with an energy greater than some observable critical value Ec (or some
other function of velocity). Because the velocity of the ejected particles was not measured only a limited
analysis can be performed and it is hard to separate the limitations of the measurement process from the
underlying probabilistic process.

Let fe(v1,v2, . . . ;u,v) be the pdf for the ejection velocity given the impact and ricochet velocities,
where as before u is the impact velocity, v the ricochet velocity and vi the velocities of the ejected
particles. Since the particles are not distinguished we take v1 > v2 > · · ·. If the probability of observing
an ejected particle is given by po(v) then the probability of observing at least n ejected particle is

∫

· · ·
∫

dv1 dv2 . . . f(v1,v2, . . . ;u,v)po(v1) . . . po(vn). (15)
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Fig. 13: Predicted and observed number of ejected particles for fresh snow
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Fig. 14: Probability of at least one ejection as a function of
√

u2 − v2 (available energy per unit mass
converted to velocity). The line is the prediction and the circles are observations



The primary constraint that f must satisfy is of course that the sum of the energies of the ejected particles
and the ricocheted particle is less than or equal to the energy of the impacting particle. Thus

f(v1,v2, . . . ;u,v) = 0 if v2 +
∑

v2
i > u2 (16)

We propose a very simple model constructed to satisfy this constraint that contains only one parameter
λ, the fraction of energy lost during each collision. We consider the entire splash process as a series of
binary collisions. Suppose that after the kth collision the remaining energy is Ek. Then during a collision
(1−λ)Ek is assumed to be dissipated or radiated into the bed. Some amount λXiEk, where Xi uniformly
distributed between 0 and 1, is given to particle k +1 so that v2

k/2 = λXiEk and the remaining energy is
passed forward to the next collision thus Ek+1 = λ(1−Xi)Ek . Any particle with an energy greater than
Ec = v2

c/2 is assumed to be observed. Particles with less energy are ignored.
The mean energy for the kth collision will be (λ/2)kE0 thus the mean velocity of the kth ejected particle

will be (λ/2)kE0/2. The mean number of ejected particles will thus be roughly log(2Ec/E0)/ log(λ/2).
Unfortunately this approach is ill conditioned when the velocity of the ejected particles is not observed.
Instead we consider an exponential distribution designed to have similar properties that combines the
observation process with the ejection process. Let the probability that at least n ejected particles are
observed be

p(at least n) = 1 − exp

[

− E

Ee

e−(n−1)γ

]

, (17)

where the ejection energy scale Ee combines material properties and the observation accuracy Ec, γ is a
dimensionless parameter and E = m(u2 − v2)/2. With this distribution the number of observed particles
should scale as 1/γ log(E/Ee), that is it increases logarithmically not linearly. The parameters were found
using maximum likelihood estimation and were

ve(ms−1) γ
compact snow 4.8 1.7
fresh snow 8.8 2.7

where ve is the ejection velocity scale defined by mv2
e/2 = Ee. The excellent agreement between the

observed distributions and the data is shown in figs. 12 and 13. Such good agreement is of course not
surprising when we are fitting two parameters and only comparing a few categories. Another test, shown
in fig. 14, is to compare the probability of at least one ejection with the theory. This shows that energy
in all the observed collisions is sufficiently low so that the probability increases approximately linearly
over the observed range and it is not possible to test its exponential dependence. Though the data is not
sufficient to validate the theory it is at least not in contradiction.

6 Conclusions

This paper has developed a splash function that is based on a physical model of the grain bed collision
process. It is well defined for all impact velocities, respects appropriate symmetries, and ascribes zero
probability to states that create energy. The theory is based on the impulse angle distribution which
is related to the roughness of the surface. It would be interesting to measure this directly in future
experiments and to compare this with the implied impulse angle pdf. The impulse restitution is related
to the stiffness of the contacts between the grains in the bed and the material restitution properties.
Though there is not enough data for a rigorous validation of the splash function, the available data is
in agreement. Clearly there is much scope for future work. Such experiments should take great care to
understand the limitations of the measurement process if bias in the results is to be avoided. A fully
automated experiment that could detect of the order O(105) collisions in three dimensions would be
immensely useful. Until such data is available, so as to accurately study the correlations between impact
and ejection velocities, no splash function can be considered established.
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