
Journal of Glaciology, Vol. 00, No. 000, 2007 1

A Comparison of Powder Snow Avalanches at Vallée de la

Sionne with Plume Theories

B. TURNBULL,1∗ J. N. MCELWAINE,2

1WSL, Swiss Federal Institute for Snow and Avalanche Research, CH 7260 Davos Dorf, Switzerland
2Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, UK.

ABSTRACT. Powder snow avalanches are natural hazards which affect the way populations

live in mountainous areas. Field measurements from avalanches remain one of the most

significant and useful sources of information about their dynamics and behaviour. In this

paper we consider all the video data from the Vallée de la Sionne test site from the years

2003 to 2005. General scaling laws are sought for the avalanche front velocity based on plume

theories. Avalanche Froude numbers are found, comparing three different length scales: the

cube root of the fracture volume, the avalanche height and the depth of entrained snow

cover. We discuss the difficulties in defining the volume of a powder snow avalanche. Should

we include just the head or also the turbulent wake that extends back to the starting zone?

This relates to whether we use a compact model for the avalanche, such as the KSB model

(Ancey, 2004; Turnbull and others, 2006) or a plume model (Turner, 1973). Observations are

made regarding the lateral spreading behaviour of the avalanches. We show that the slow

lateral spreading can be explained by large internal velocities and anisotropic turbulence

generated by the large scale motion in the avalanche head.

INTRODUCTION

Snow avalanches can adopt different flow regimes depending

on the precise conditions of the snow cover and the nature

of the avalanche track. We consider powder snow avalanches,

which usually occur when the avalanching snow is dry, fine

grained and on a steep slope (McClung and Schaerer, 1993).

Powder snow avalanches reach high velocities which can range

from 10 to 100 m s−1, depending on their size. With flow

heights from 5 to 100 m and mean densities in the range 5 to

50kg m−3, the Reynolds number of a powder snow avalanche

varies from 107 to 109, and the flow is fully turbulent (Bozhin-

skiy and Losev, 1998). At such high Reynolds numbers, basal

drag is small (Hogg and Woods, 2001) and the dynamics are

dominated by the interaction between the particle suspen-

sion and the ambient air. Snow particles, once airborne, are

supported in suspension by turbulence in the interstitial air,

giving the suspension a higher mean density than the sur-

rounding air. This density contrast provides the driving force

for the avalanche. The density difference is maintained by the

continued entrainment of snow particles from the snow cover

along the avalanche track, counteracting the dilution of the

suspension by the entrainment of ambient air. Entrainment is

the incorporation of one material into another and the term

is used for both the incorporation of air at the top surface of

the avalanche, and for the incorporation of snow at the base

of the avalanche. There are some arguments that the powder

snow avalanche is driven by a dense basal layer. However, at

the high Reynolds numbers found in fully developed powder

snow avalanches (described above) the effects of viscosity are

negligible and basal shear cannot provide sufficient force to

dominate the flow. The effects of the basal layer are never-
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theless important in the entrainment of the ambient snow

cover.

There are many aspects of powder snow avalanche dynam-

ics that are still poorly understood, for example how they

form from a dense granular flow of snow. Careful and de-

tailed measurements of avalanches are necessary to under-

stand more about their evolution and dynamics. For this

reason, several avalanche test sites throughout Europe and

the World have been developed (Issler, 1999). Vallée de la

Sionne is the Swiss Federal Institute for Snow and Avalanche

Research avalanche test site in the Swiss Alps. At this site,

large powder snow avalanches can be artificially released with

explosives to flow past a mast carrying a variety of sensors

(Dufour and others, 2000), Figure 1. The three release areas

where avalanches can be triggered are marked A, B and C

in Figure 1.

Data retrieved from these avalanches have often been used

to calibrate computational models predicting dense avalanche

run-out distances (Christen and others, 2002). However rel-

atively little analysis has been undertaken comparing data

from several avalanches to better understand the avalanche

flows. McElwaine and Turnbull (2005) used air pressure mea-

surements from five Vallée de la Sionne avalanches to under-

stand the air flow inside and around powder snow avalanches

using a similar technique to Nishimura and Ito (1997) with

real snow flows and McElwaine and Nishimura (2001) with

ping-pong ball avalanches. In the present work, video data

from Vallée de la Sionne avalanches between 2003 and 2005

are analysed. The objective is to find general scaling laws for

the avalanche front velocity and to discover the form of the

volume evolution function. In the final section, we discuss the

lateral spreading of powder snow avalanches.
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Fig. 1. Photograph of the Vallée de la Sionne test site showing the three possible release areas A, B and C and the 20 m high

measurement mast. Photograph F. Dufour.
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Fig. 2. Map of the Vallée de la Sionne test site, courtesy of Swisstopo (Swisstopo, 2001). The grid lines are 1 km squares.

The avalanche runs from the release areas A, B and C at Crêta Besse (NW region of the map) to the river valley in the SE

region of the map. The video recordings are made from Plan des Larzes and La Brune, marked X. M is the location of the

measurement mast.
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FIELD EXPERIMENT SUMMARY

The map in Figure 2 shows the topography of the Vallée de

la Sionne test site. The avalanche release zones A, B and

C lie in the bowl marked Crêta Besse in the NW region of

the map. Avalanches flow downslope in the direction of the

1491 m a. s. l. spot height in the SE corner of the map. From

the regular spacing of the contours it is clear that the slope

is, to good approximation, flat with an average slope angle of

about 25◦. The small gully at about 1900 m a. s. l. channels the

avalanches towards the measurement mast below it, on which

a variety of pressure and velocity sensors are mounted. The

analysed avalanches are considerably wider than the gully and

it has little influence on the dynamics. Note that from release

area C, the North Eastern part of Crêta Besse, there are two

slight channels leading onto the open slope. Large avalanches

released from this area can separate into two branches. Those

avalanches that have branched in this way are indicated in

Table 1.

In addition to the sensors mounted on the measurement

mast, there are two main sources of data from the Vallée de

la Sionne test site. The surface area of the released slab and

the mean depth of the fracture line are calculated by compar-

ing aerial photographs of the site taken before and after each

avalanche. Multiplying the slab area by the mean fracture

depth gives an estimate of the fracture volume, Vf , (see Ta-

ble 1). The mean net depth of snow cover entrained, referred

to as the entrainment depth, along the avalanche path is also

found from the aerial photographs. This is an average depth

of entrained snow cover based on the difference between the

estimated volume of deposited snow and the estimated frac-

ture volume. The difference in snow volume is assumed to

have been entrained evenly over the powder snow avalanche

width along the track (Sovilla and others, 2006), giving the

depth of entrained snow cover used in this work (given in Ta-

ble 1 to the nearest 0.05 m). The actual mean entrained snow

depth will be larger since deposition occurs along the track,

but we ignore this and assume that the net snow entrain-

ment will give the correct scaling. A full description of the

photogrammetry analysis for each avalanche can be found in

the SLF winter reports Dufour and others (1999–2005).

Secondly, video recordings of the avalanche, synchronised

by an audio signal, are made from at least two different known

locations (Plan des Larzes and La Brune, each marked X on

the map in Figure 2). The front position is directly deter-

mined as the point of the avalanche furthest down the track

and tracked in each video sequence, shown in Figure 3 at

5 s time intervals. This front position is differentiated over

the time step to find the avalanche front velocity. Additional

features on the avalanche surface, for example a particular

cleft, are also identified and tracked in each video sequence.

With two or more images, the three-dimensional location of

each feature can be determined. The accuracy of this spa-

tial measurement varies as the avalanche moves down the

slope; at a distance of 1500 m from the cameras the position

is accurate to 1m, at a distance of 2500 m the accuracy is

reduced to 5 m (Vallet and others, 2004). The located fea-

tures are linked to form a triangular mesh from which the

avalanche upper surface can be reconstructed at each time

step. By projecting the feature positions vertically downwards

onto a digital terrain map of the region, the avalanche vol-

ume at each time step is calculated by summing the grid of

vertical triangular prisms, (see section ”Avalanche Volume”).

The mean height of the avalanche is found by dividing this

avalanche volume by the area of the reconstructed avalanche

surface. This avalanche height, evaluated at the time when

the avalanche front reached the measurement mast, is the

avalanche flow height used in the scaling analysis and given

in Table 1. A full description of these videogrammetry tech-

niques, employed to generate the data analysed in this work,

is given in Vallet and others (2004).

The analysed avalanches are summarised in Table 1. This

table also shows the symbol for each avalanche used in the

plots throughout this work. Avalanches allocated two sym-

bols are those which have split into two distinct branches

with different fronts, each front with its own symbol. For the

video- and photogrammetric analyses to be worthwhile and

to ensure that the triggered avalanches reach the measure-

ment mast, it is necessary that there has been a high level of

snow fall in the days preceding the experiment, but that the

experiment itself is carried out in clear, sunny conditions.

Vallée de la Sionne avalanches are usually mixed snow avalanches,

that is avalanches with a dense granular flow of snow beneath

a powder cloud (Bozhinskiy and Losev, 1998). In this work,

the analysed measurements are of the powder cloud only. The

dense granular flow is important to the powder cloud because

it is the source of entrained snow, without which the powder

cloud will rapidly dilute by air entrainment and come to rest.

We assume that the direct stresses between the two layers

can be ignored, because the Reynolds number is so large, and

therefore the only important momentum exchange is due the

transfer of mass between the layers. Since the surface stresses

are low from the powder cloud this also means that if the

cloud has separated from the dense layer, which can occur in

complicated topography, it will no longer be able to entrain

snow, unless the snowpack is exceptionally light and nonco-

hesive. Thus, the existence of the dense layer is crucial to

the entrainment of snow, but provided that the dense layer

exists, its only effect is that of a lag in the entrained snow

that the powder cloud sees. Since we consider only a constant

entrainable snow depth this can be ignored.

RESULTS

Avalanche Front Velocity

The front position of avalanche no. 509, measured by the

curvilinear coordinate s, distance down the track, is plotted

in Figure 4, where t is the time elapsed since the explosion

triggering the avalanche. The gradient of this curve is the

avalanche front velocity and the curvature is the accelera-

tion. Except for the first and last phases of the avalanche,

the data are well fitted by a straight line, corresponding to a

constant front velocity (of about 50m s−1) despite small vari-

ations in slope angle. This constant front velocity extends for

most of the avalanche track and supports measurements made

by Britter and Linden (1980) of two-dimensional, continuous

gravity currents of saline solution flowing on an incline. Mea-

surements from chute flows of snow-air suspension currents

(Turnbull, 2006) also found the flow front reached a steady

velocity, the magnitude of which was independent of slope

angle.

A constant front velocity indicates a balance of the iner-

tia of the entrained snow and air with the driving buoyancy.

At the Reynolds numbers, (Re ≈ 108), expected for powder

snow avalanches, the basal drag on an avalanche can be as-

sumed to be small compared with the drag due to the air flow
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Avalanche Date Fracture Release Entrainment Flow
no. dd/mm/yyyy Volume, m3 Area Depth, m Height, m Symbol

506 31/01/2003 60,000 C 0.50 0.20 18 ⋄ ∗
509 07/02/2003 55,000 B 0.10 20 x
628 19/01/2004 21,000 B 0.10 22 +
629 19/01/2004 130,000 C 0.15 0.15 36 ⊳ ⊲
726 17/02/2005 61,000 C(right 0.10† 19 ◦

(side only)

Table 1. Table summarising the 2003 to 2005 Vallée de la Sionne powder snow avalanches giving the date, fracture volume, from

which release area the avalanche was released, the entrainment depth and the flow height of the avalanche at the measurement

mast. The symbols are those used in the plots throughout this work. Avalanches with two symbols are those which split into

two parts giving two values of front velocity (see text). † is a value estimated from comparison with similar avalanches.

Fig. 3. Avalanche no. 509 powder cloud front at five second

intervals (Vallet and others, 2004). The upper lines, at the

tail of the avalanche, are artifacts of the contour processing.

around the avalanche and the retarding effect of the inertia

of entrained snow and air masses. As the slope angle becomes

steeper, the increased component of gravity driving the pow-

der snow avalanche is counteracted by an increase in air en-

trainment. This can be seen more clearly if the momentum

equation is considered for a powder cloud of volume V and

velocity u giving the cloud a total mass M = B +(1+χ)ρaV ,

where B is the buoyancy, ρa is the ambient air density and χ
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Fig. 4. Avalanche no. 509 front displacement s versus time

after explosion t.

is the added mass coefficient accounting for ambient air dis-

turbed by the passing of the avalanche. From Turnbull and

others (2006), the rate of change in momentum is the downs-

lope component of the driving buoyancy

d (Mu)

dt
= Bg sin θ,

on a slope inclined at an angle θ. Thus the change in velocity

is

du

dt
=

Bg sin θ

M
− u

M

dM

dt
. (1)

The right hand side shows a balance between the driving

buoyancy and a retarding term proportional to the rate of

change in mass of the avalanche. For a steady velocity, these

terms must exactly balance.

The parts of the curve in Figure 4 that do not have a

roughly constant gradient are where particle entrainment and

deposition effects are most important. As an avalanche starts

to accelerate, it entrains more particles thereby increasing the

driving buoyancy contrast, accelerating the avalanche further

(Bonnecaze and others, 1993). As the avalanche slows down,

the turbulent energy is reduced so that particles can no longer

be supported in suspension. Particles are deposited which re-

duces the driving buoyancy causing the avalanche to slow

down.
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Front Velocity in Plume Models
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Fig. 5. An inclined gravity current fed with constant buoy-

ancy flux, g′

0Q, moving with front velocity uf .

Britter and Linden (1980) considered continuous, two-dimensional

gravity currents of saline solution flowing down an incline,

Figure 5. The saline solution was supplied through a nozzle

fixed at the top of the slope. They showed that the front ve-

locity was dependent only on the buoyancy flux, g′

0Q, of saline

solution supplied to the current, where Q is the volume flow

rate of supply of buoyant fluid and g′

0 is the density adjusted

gravity. For a fluid of density ρ flowing into an ambient fluid

of density ρa, Britter and Linden (1980) define the density

adjusted gravity as

g′

0 = 2g(ρ − ρa)/(ρ + ρa). (2)

Thus, for the Britter and Linden (1980) experiments, shown

schematically in Figure 5, dimensional analysis gives a non-

dimensional front velocity

ũf =
uf

(g′

0
Q)

1

3

,

where ˜ indicates the dimensionless quantity. The front dy-

namics of the Britter and Linden (1980) currents are there-

fore dominated by the driving buoyancy flux which we will

now discuss in the context of an avalanche flow.

In a powder snow avalanche, the fracture volume of snow

provides the initial buoyancy which is subsequently supple-

mented by the snow entrained along the track. Thus, as in

the Britter and Linden (1980) experiments, buoyancy is con-

tinuously supplied to the current. In contrast to the Britter

and Linden (1980) experiments the entrained snow feeds di-

rectly into the avalanche head and this buoyancy source trav-

els with the flow. In the rest frame of the avalanche, the flow

can be thought of as a plume source, of strength Q = heuf ,

subject to an oncoming flow of velocity uf , shown schemati-

cally in Figure 6. This configuration is similar to the constant

flux gravity currents travelling into an oncoming flow of Hogg

and others (2005) insomuch as we consider both a buoyancy

induced motion and effects of the oncoming stream. Hogg

and others (2005) showed that the front velocity depends on

both the oncoming flow velocity and the Britter and Linden

(1980) “buoyancy velocity” (g′

0Q)
1

3 . However, in Hogg and

others (2005) buoyancy is still fed from a source fixed at the

tail of the current (as in Britter and Linden (1980)) and does

not move with the current as in the avalanche motion. This

means that in the avalanche the oncoming flow velocity is

determined by the avalanche front velocity, itself determined

by the buoyancy velocity, whereas in Hogg and others (2005)

the oncoming velocity is independent of the current dynam-

ics. Furthermore the Hogg and others (2005) flows are on a

horizontal plane where there is relatively little mixing. If the

dynamics of the Vallée de la Sionne avalanches are dominated

by the buoyancy of the plume source, as in both the Britter

and Linden (1980) and the Hogg and others (2005) experi-

ments, we would expect the front velocity to scale with the

buoyancy velocity (g′

0Q)
1

3 .

g’0Q

ρ

ρ

h

he

u f

a

Fig. 6. Schematic diagram of an avalanche of height h en-

training particles to a depth he in the rest frame of the

avalanche.

The main variables in an avalanche flow are shown in Fig-

ure 6 in the rest frame of the avalanche. Note that there

are four significant lengths; s, the distance travelled (in the

steady case s ≈ tuf), the avalanche height, h, the depth of

entrained snow cover, he, and from the initial conditions the

cube root of the fracture volume, V
1

3

f . Ellison and Turner

(1959) and Turner (1973) show that for an inclined plume,

the plume height, h, is proportional to the distance travelled,

s, (discussed further in section ”Avalanche Volume”), due to

the entrainment of air. However, this is not the same height

as the height of the avalanche head, the plume height cor-

responding more to the height of the turbulent wake as we

move back from the head. Since in a powder snow avalanche,

by definition, the volume of air is very much greater than the

volume of snow, the lengths s and h characterise the total vol-

ume of the avalanche. These two variables are determined by

the interaction of the powder cloud with the ambient air and

are dependent variables, though we do not know what this

dependence is. We do not have a prescription for the height

h, so we retain it as an independent length scale. The depth

of entrained snow cover, he, and the fracture length scale,

V
1

3

f , are independent variables determined by the avalanche

track, though they may be related by Vf ≈ Afhe, where Af

is the fracture area. The strength of the buoyancy source is

characterised by he, discussed above, and V
1

3

f characterises

the initial conditions.

Three non-dimensional groups can be formed from the vari-

ables in Figure 6. We have

uf√
g′

0L
,

tuf

L
,

ρ

ρa

,

where L is one of the lengths h, he or V
1

3

f . Here we consider

only steady flows so that the first two groups are related and

we will look for a Froude number

Fr =
uf√
g′

0
L

, (3)
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Fig. 7. Seven Vallée de la Sionne avalanche fronts between

2003 and 2005. (i) Avalanche front displacement, qs, versus

time, t.(ii) Non-dimensional front displacement, s/L, versus

non-dimensional time, t
√

g′

0/L, where the density adjusted

gravity, g′

0, is defined in equation 2 and the length scale L =

V
1

3

f , the cube root of the fracture volume. The best fit line is

calculated from the mean of the gradients of the lines. Each

line has been shifted so that its first point lies on the best fit

line.

where g′

0 is the reduced gravity which incorporates the density

ratio (equation 2).

There are many different definitions of g′

0 throughout the

literature, some of which may scale the data better than oth-

ers depending on the precise conditions. For example Gröbelbauer

and others (1993) find two density relations for high density

ratio intrusions, one for the light front and one for the heavy

front. For the heavy front in an infinite ambient the density

relation is (ρ− ρa)/2ρa. This is less useful for the density ra-

tios found in avalanches because as ρ/ρa becomes very large,

the density relation (and thus the density adjusted gravity)

tends to infinity. So we will use the Britter and Linden (1980)

definition of density adjusted gravity, equation 2, which re-

mains finite at large ratios ρ/ρa. The snow cover density was

measured as approximately 200 kg m−3 for all of the Vallée de

la Sionne avalanche fronts. Unfortunately there are no den-

sity measurements from the powder snow avalanches them-

selves and this value must be estimated. For the purposes of

this scaling study we shall assume a powder cloud density
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Fig. 8. Seven Vallée de la Sionne avalanche fronts between

2003 and 2005, non-dimensional avalanche front displace-

ment, s/L, versus non-dimensional time, t
√

g′

0/L, where the

density adjusted gravity, g′

0, is defined in equation 2. (i) The

length scale L = h, the avalanche height at the measurement

mast and (ii) the length scale L = he, the depth of entrained

snow cover. The best fit line is calculated from the mean of

the gradients of the lines. Each line has been shifted so that

its first point lies on the best fit line.

of 30 kg m−3 for all of the avalanche fronts (Bozhinskiy and

Losev, 1998).

Scaling
We will consider three possible Froude number scaling laws

for the avalanche flow based on the three independent length

variables in Figure 6. If the avalanche dynamics are deter-

mined by the initial conditions, that is the volume of snow

that releases and forms the avalanche, then we expect the

front velocity to scale with a length determined by those ini-

tial conditions. In this case, the length in the Froude number

given in equation 3 is L = V
1

3

f , where the fracture volume

Vf is measured by photogrammetry (see section ”Field Ex-

periment Summary”). Secondly, we will consider the fully de-

veloped avalanche flow, characterised by the avalanche flow

height, i.e. L = h. This scaling is dominated by the interaction

with the ambient air. For convenience, we take the avalanche

height at the mast measured from the videogrammetry for

each avalanche (see section ”Field Experiment Summary”)

to be a typical value. Lastly, if the dynamics are determined
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only by the strength of the buoyancy source, as in the Britter

and Linden (1980) and Hogg and others (2005) experiments

described above, the front velocity should scale with the char-

acteristic depth of the entrained snow cover and L = he (de-

termined from photogrammetry, section ”Field Experiment

Summary”).

Front displacement versus time plots for all the 2003 to

2005 avalanches (seven avalanche fronts) are shown in Fig-

ure 7 (i). Figures 7 (ii) to 8 (ii) show the same data but

scaled such that the non-dimensional front displacement, s/L,

is plotted versus the non-dimensional time, t
√

g′

0/L, for each

avalanche front. The density adjusted gravity, g′

0, is calcu-

lated from equation 2 using the snow cover density when using

the fracture or erosion properties for scaling, and the powder

cloud density when scaling with the avalanche height. The

mean gradient of each line is the avalanche non-dimensional

front velocity or Froude number, as defined in equation 3 and

given in Table 2 for each avalanche front.

Note that t is the time elapsed since the triggering ex-

plosion. The curves in Figures 7 and 8 have different ori-

gins, because the time delay between the explosion and ac-

tual avalanche release varies for each avalanche. Since the

avalanche can only be seen in the videos once it has started

to develop, it is not possible to determine when release oc-

curs from the video recordings. Variation in initial conditions

between the avalanches also results in each avalanche having

a different virtual origin. For clarity, the curves have been

shifted to place their first point on the best fit line, calcu-

lated from the mean Froude number given in Table 2.

The mean and standard deviation of the avalanche Froude

numbers are shown in Table 2 for each length scale, L. Ro-

man numerals indicate different fronts of the same avalanche,

that is where the avalanche has split into distinct branches.

Unscaled, the standard deviation of the avalanche velocities

is 14% of the mean. Ideally, for this kind of analysis we would

need a larger range of initial data so we can see the collapse

with the scaling more clearly. The scatter in the Froude num-

bers (the standard deviation as a percentage of the mean) is

significantly reduced only when the the avalanche height at

the mast is the length scale. In this case the Froude number

is 2.2±0.18, that is the standard deviation is 8% of the mean

which is a convincing collapse of the data. The fracture prop-

erties appear to have little effect on the front velocities further

down the track. This shows that the entrainment of air and

snow along the track significantly affects the avalanche dy-

namics and the initial conditions are slowly forgotten. When

scaled with the height of entrainable snow cover the scatter

actually increases. This increase in scatter will be partly a

result of the error in estimating the entrained snow depth

(Dufour and others, 1999–2005), which can be considerable.

There is very little quality data on snow entrainment, and

there are varying methods of quantifying the entrained snow

depth (Sovilla and others, 2006). The data we have used is

contaminated by later deposition and for this reason it may

not give a representative value of the buoyancy flux into the

avalanche head. In addition, more reliable density measure-

ments of the individual avalanches will be an important devel-

opment. These will give varying values of the density adjusted

gravity, g′

0, and may improve the scaling.
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Fig. 9. Vallée de la Sionne avalanches 2003 to 2005: Volume

variation with time.

Avalanche Volume

Measurement Difficulties
The problem with measuring the volume of a powder snow

avalanche is that it is not clearly defined. For comparison with

compact models such as the KSB model (Kulikovskiy and

Sveshnikova, 1977; Ancey, 2004; Turnbull and others, 2006) or

the model in Fukushima and Parker (1990), it is convenient to

consider the total volume to be just that of the head. But this

is impossible to repeatably identify from videos. When com-

paring with plume type models, such as Ellison and Turner

(1959) and Turner (1973), the entire avalanche volume, in-

cluding the turbulent wake that extends back to the starting

zone, should be considered. The videogrammetry analysis has

been carried out by different people in different years who

have had different ideas of how to define avalanche volume.

Volume data from the five Vallée de la Sionne avalanches

between 2003 and 2005 are shown in Figure 9. This data

shows that the volumes of the 2004 avalanches (nos. 628 and

629) are both nearly 10 times smaller than the volumes of the

2003 and 2005 avalanches. However, the large fracture volume

of avalanche no. 629 in particular (Table 1), would lead you to

expect a very large avalanche. And to the observer, avalanche

no. 629 did appear large. This discrepancy illustrates a prob-

lem with videogrammetric analysis; that avalanche data is

not comparable unless it has been systematically generated.

For videogrammetric field data to be compared between dif-

ferent avalanches and different field sites it is paramount that

a system is devised for the reliable and repeatable delineation

of the avalanche perimeter.

In the 2003 and 2005 avalanches, the perimeter was found

from the 1m avalanche height contour from the reconstructed

surface. This is the contour you see in Figure 3, where the

avalanche tail extends to close to the fracture line. In the

2004 analysis a different approach was used and a subjec-

tive, unrepeatable method for finding the rear extent of the

avalanche was adopted. This resulted in a much lower recon-

structed surface area for the 2004 avalanches than for the

other years, and thus the apparently much lower avalanche

volumes in Figure 9.

Comparison With Plume Theory
In the following we will use Ellison and Turner’s theory for

an inclined plume to analyse the Vallée de la Sionne volume
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Avalanche Unscaled Fracture Fr Flow height Fr Erosion Fr

no. ( m s−1) V

1

3

f
(m) L = V

1

3

f
h (m) L = h he (m) L = he

506I 43.4 39 1.57 18 2.38 0.50 13.9
506II 37.0 39 1.34 18 2.03 0.20 18.8
509 47.4 38 1.75 20 2.53 0.10 34.1
628 44.7 28 1.94 22 2.25 0.10 32.1
629I 54.3 51 1.74 36 2.14 0.15 31.9
629II 51.9 51 1.66 36 2.04 0.15 30.5
726 39.4 39 1.43 19 2.13 0.10† 28.3

Mean 45 1.6 2.2 27
SD 6.3 0.20 0.18 7.7

SD/mean % 14 12 8.3 28

Table 2. The non-dimensional front velocities (Froude numbers) of seven Vallée de la Sionne powder snow avalanche fronts.

The front velocities have been scaled with
√

g′

0L for three different length scales L: The cube root of the fracture volume; the

avalanche flow height at the measurement mast; and the depth of entrained snow cover (erosion). SD is the standard deviation

from the mean. † is a value estimated by comparison with similar avalanches.

O

h

s

0

U

U(t−t )

Fig. 10. Sketch of an inclined plume travelling with a steady

front velocity U and with a downslope coordinate s. The

plume has a height h at time t and height 0 at time t0.

data. From Ellison and Turner (1959) and Turner (1973), the

mass continuity equation for an inclined plume such as that

shown in Figure 10 is

d (Uh)

ds
= αU, (4)

where U is the mean velocity in the downslope direction s,

and α is the air entrainment coefficient. This theory does not

include the effect of entrained snow at the avalanche base,

but given the large density difference between snow and air

it is reasonable to assume that the volume of snow in the

avalanche is very small compared with the volume of air, ex-

cept near the starting zone. Thus, air entrainment will domi-

nate the volume growth. Variables are changed from distance,

s, to time, t, using d

dt
= U d

ds
. Now we can integrate and, if

the mean velocity is independent of t (a reasonable assump-

tion given the steady front velocities observed and analysed

in the previous section) we find the flow height as a function

of time

h = αU(t − t0),

where t0 is a virtual origin chosen such that h(t0) = 0. If

the flow is assumed to be axisymmetric the volume will be

proportional to the flow height cubed, thus the volume will

increase with time cubed. For example, if the avalanche is a

half cone of cross sectional area πh2/2 and length U(t − t0),

as shown in Figure 10, the volume is

V =
π

2
α2U3(t − t0)

3. (5)

The same argument can be applied if a different geometry is

assumed which will only change the factor π

2
α2.

We look for an effective air entrainment coefficient E so

that, for the geometry in Figure 10,

E = πα2/2. (6)

Vallée de la Sionne volume data from the five avalanches be-

tween 2003 and 2005 have been fitted for EU3 and t0, with

the function

V = EU3(t − t0)
3, (7)

shown in Figure 11. The variable t − t0 is the time since

the triggering explosion, t, corrected with the virtual origin.

Values of the fit parameters EU3 and t0 are given in Table 3

together with the residuals. The residual, R, is the root mean

squared relative error between the fit predictions pi and the

data values Pi

R =

√

1

n

n
∑

i=1

(

1 − pi

Pi

)

2

, (8)

for each series of n data points. The entrainment coefficient,

E, is given in Table 3, found from the fit parameter EU3 and

the mean unscaled front velocity for each avalanche given in

Table 2.

The fit results given in Table 3 show that the three similarly

analysed avalanches, nos. 506, 509 and 726, have low residu-

als and that the cubic curve fits well and the volume grows in

agreement with Ellison and Turner (1959) and Turner (1973).

For these three avalanches the avalanche surface area was cho-

sen to extend from the avalanche front to close to the fracture

line of the avalanche for each time step, see Figure 3. Most of

the avalanche that can be seen is a turbulent wake with only

a small and visibly indistinguishable head (the head is distin-

guishable from the air pressure data in McElwaine and Turn-

bull (2005)). Although the head determines the avalanche
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Fig. 11. Vallée de la Sionne avalanches volume variation with

cubic fits (see Table 3).

velocity (Britter and Linden, 1980), the turbulent wake dom-

inates the volume growth. The cubic growth suggests that

this turbulent wake is well modelled by an inclined plume

(Ellison and Turner, 1959; Turner, 1973).

For the 2004 avalanches, nos. 628 and 629, where a much

smaller surface area was identified, the volume measurements

are not necessarily dominated by the wake. Accordingly, in

the case of the 2004 avalanches the volume measurements are

not as well fitted with a cubic function as the turbulent wake

dominated avalanches. The head of the avalanche is less well

modelled by an inclined plume.

Observations on Lateral Spreading

A feature of the avalanche, apparent in Figure 3, is that it

spreads laterally slowly compared with the avalanche front

velocity. There are several effects that can influence the lat-

eral spreading. For example surface topography affects the

way an avalanche spreads: a gully will channel the flow and

prevent lateral spread whereas a strongly convex hillside will

increase lateral spreading. Dade and others (1994) invoked

surface drag to explain reduced lateral spreading compared

with the predictions, but as discussed in the introduction, for

the Reynolds numbers found in powder snow avalanches sur-

face drag is not significant. A further effect is the pressure

field from the external air flow. Webber and others (1993) as-

sumed this balance between the hydrostatic and stagnation

Avalanche EU
3 (m3 s−3) t0 (s) Residual E

no.

506 68.1764 2.0485 0.29 1.3 × 10−3

509 29.7456 -9.8914 0.51 5.0 × 10−4

628 2.4969 -3.3361 2.70 2.7 × 10−5

629 4.9864 -3.7362 2.11 4.1 × 10−5

726 43.9929 -0.6502 0.29 1.3 × 10−3

Table 3. Values of the fit parameters EU3 and t0 with their

residuals and the non-dimensional entrainment coefficient E.

The fit function is given in equation 7.

pressures applied all around the boundary to find constant

shape solutions. For a cloud of vertical height h and density ρ

on a slope of angle θ, Webber and others (1993) balanced the

stagnation pressure 1

2
ρau2

n with the excess hydrostatic pres-

sure h(ρ− ρa)g cos θ along the current boundary, where un is

the velocity normal to the avalanche boundary. von Kármán

(1940) used this condition at the flow front to show that the

Froude number

Fr =
un√
g′h

=
√

2,

where g′ is the reduced gravity

g′ = g
(ρ − ρa)

ρa

cos θ.

If we were to apply this condition, as in Webber and oth-

ers (1993), along the boundary of a powder snow avalanche

we find hugely overestimated normal velocities. For example,

given typical values of slope angle (θ = 30◦), powder cloud

height (h = 10 to 50 m) and density (ρ = 20 to 30 kg m−3)

(Bozhinskiy and Losev, 1998), the normal velocity given by

the Froude number condition above would be

un ≈ 30 to 120m s−1.

This is far higher than the observations (see Figure 3).

In fact assuming stagnation pressure at the boundary is an

overestimate of the pressure. As air accelerates around the

sides of the the avalanche its pressure drops, this means that

for the flow shown in Figure 12, the pressure decreases from

the stagnation point, X , up the slope towards, Y . Thus the

further up the slope from the head, the stagnation pressure

approximation becomes increasingly less valid as the pres-

sure counteracting the spreading decreases. From these ar-

guments, the normal velocity should increase with distance

downstream from the head. This Froude number condition

gives a lower bound for the normal velocity. The decrease

in pressure downstream from the stagnation point therefore

suggests that in the vicinity of the head, the radius of curva-

ture will increase with time. Figure 3 shows that the radius

of curvature in fact varies with time by no more than a fac-

tor of two. This is very little compared with the distance the

avalanche front has moved down the slope.

If, rather than balancing the internal and external pressures

to estimate the spreading velocities, we balance the internal

inertia, the problem is that of a dam break. In this case, the

spreading velocity still scales with
√

gh multiplied by some

order one factor, the difference being g and not g′. However

the problem is modelled, the predicted spreading velocities

will be still much larger than the observations.

What then can explain the slow lateral growth? The inter-

nal motion of the powder cloud can be significant - demon-

strated by the air pressure measurements in McElwaine and

Turnbull (2005) and Russian measurements of the “avalanche

air blast” (Grigoryan and others, 1982). This longitudinal in-

ternal motion (see Figure 12) means that the pressure inside

the head is not hydrostatic. For the type of internal flow we

expect (McElwaine and Turnbull, 2005), the pressure at the

interface will be reduced compared with the hydrostatic case

and lateral spreading will be inhibited. Large internal veloc-

ities must be present for the shape of the avalanche head to

be explained.

The powder cloud can be considered as having two distinct

regions; the avalanche head and a turbulent wake. Much of

the visible avalanche is no longer influenced by the motion of
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X

Y

Fig. 12. A plan view of the flow field inside and around

the head of an avalanche in the rest frame of the avalanche.

Pressure decreases from the stagnation point, X , to a point

downstream, Y .

the avalanche head, and is a turbulent wake. Figure 3 shows

that the avalanche width in the turbulent wake, far back from

the head, also changes little over the course of the avalanche.

The vertical growth rate of the turbulent wake is significantly

higher than the lateral growth rate.

The Richardson number, Ri, is defined as the ratio of po-

tential to kinetic energy of an entraining interface. For low

Richardson numbers, the increase in potential energy coun-

teracting entrainment is small compared with the kinetic en-

ergy associated with the interface. Since, in the absence of

any cross-slope curvature, any mixing in the cross-slope, lat-

eral, direction is not counteracted by gravity, the Richardson

number in this direction is zero. Thus, if the turbulence in

the avalanche was homogeneous, it would be expected that

the cloud entrains ambient fluid at the highest rate where

the Richardson number is zero, i.e. in the lateral direction.

With homogeneous turbulence, mixing in the lateral direc-

tion would be stronger than in the direction perpendicular to

the slope, where the Richardson number is non-zero. In the

previous paragraph it has been observed that the growth rate

perpendicular to the slope is higher than the lateral growth

rate. This observation suggests that the turbulence is very

anisotropic. Large-scale eddies are formed aligned with the

axis of the avalanche due to the downslope velocity and the

counteracting drag over the surface of the avalanche. Since

these eddies are aligned with the axis of the avalanche they

will entrain ambient air perpendicular to the slope. This en-

trainment will be much stronger than the lateral entrain-

ment which will occur as the large-scale turbulence decays

to smaller scales and becomes isotropic.

CONCLUSIONS

In this work we have analysed front position and volume

data from the Vallée de la Sionne avalanches between 2003

and 2005 and compared these data with theories for inclined

plumes. The front velocity reaches a constant value over most

of the track. When non-dimensionalised with
√

g′

0h, where h

is the avalanche height at the measurement mast, then this

constant front velocity varies little for the analysed avalanche

fronts. The non-dimensional front velocity, or Froude number,

is found to be

Fr =
u√
g′

0h
= 2.2 ± 0.18

for the seven avalanche fronts analysed. Though more physi-

cally reasonable, the fracture and snow cover variables do not

scale the avalanche data convincingly.

The total avalanche volume has been found to increase cu-

bicly with time. For the analyses where the volume of only

the front part of the avalanche was measured, no such cubic

growth was found. The cubic growth of the total avalanche

volume is dominated by the turbulent wake. The shape of

the head and the lack of lateral spreading indicate significant

internal motion. In the turbulent wake there is little lateral

spreading compared with the height growth of the powder

cloud. This effect is explained by anisotropy of the turbu-

lence generated by large scale vortical motion in the head.

We have shown that plume theories can accurately describe

the volume increase in the avalanche, and have no difficulty

with the avalanche tail extending back to the starting zone.

This success contrasts with the success of compact models,

such as the KSB model, which better capture the front dy-

namics of the flow. A combination of the two approaches

would therefore be useful. There are two ways of approaching

this. One way is to start from a compact model but assume de-

caying profiles for density and velocity as we move back from

the head in the avalanche. These must be chosen to decay fast

enough so that they can be integrated over all space. These

will then result in the same KSB equations but with different

closures. This may work well for constant entrainable snow

depth and constant slope angles but is non-physical if these

vary, since the dynamics of the avalanche are related along its

length. Thus, this model may be useful with laboratory ex-

periments but will be less useful for natural avalanches. The

alternative approach is to model the avalanche as a plume

with time varying buoyancy in the head, according to the

entrainable snow depth and front speed. The head is then

a singularity in the plume theory which will need closure to

specify a virtual origin correction and the front velocity. With

this approach it should be relatively easy to account for lat-

eral spreading by incorporating cross-slope air entrainment

and direct buoyancy driven lateral forces.

With improvements in data quality and the availability of

more data (including density measurements) it will be pos-

sible to draw stronger conclusions about the scaling proper-

ties of avalanches. Repeatable laboratory experiments, where

an experiment can be carried out in the same manner many

times, will also be important sources of data for investigat-

ing the validity of plume theories for modelling flows such as

powder snow avalanches.
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