Computer modeling

The ping-pong balls avalanche system is a granular flow (the ping-pong balls)
interacting strongly with a fluid flow (the air). By strongly interacting we mean
that any accurate description must include the force of the air on the balls and
the force of the balls on the air.

This system is described by well known equations: The air flow obeys the
Navier-Stokes equations, and each ping-pong ball follows Newtons law. The force
on each ball contains contributions from gravity, ball-ball forces, ball-ground
forces and air-drag forces. The air-drag force comes from the no-slip boundary
condition between the balls and the air flow. The large range of length and time
scales makes direct integration of the equations of motion very difficult. Ball-ball
collisions occur over time intervals of order 10~*s whereas the duration of the
flow is around 30s. To resolve the collisions time steps at least ten times smaller
must be used, thus 10 million or so time steps are necessary. The length scales
in the problem are the length of the ski jump O(100m), the length scale given by
the volume of the flow O(1m), the size of the balls themselves O(0.01m) and the
air flow details around the balls 0(0.001m). A direct integration would require
a grid of size 100 x 10 x 10/0.001* = 10'3. Direct calculations require at least
order 10?° operations and are obviously infeasible.

The most important simplification to make is in the interaction between the
balls and the air. If we consider the air flow only on a scale much larger than the
individual ping-pong balls we can replace the air-ball no-slip boundary condition
by an empirical body force representing the average drag of the balls on the
air. If the grid squares are taken as 1m then the total grid size is reduced to
10* and the problem becomes feasible. The volume concentration of the balls is
accounted for as an additional term in the conservation of mass equation. As
a first approximation we regard the flow as inviscid since the Reynolds number
for the flow is of order 10® (based on the smallest length scale, ball diameter,
and ball terminal velocity) and the drag forces are included explicitly. This
approach fails if there is separation in the flow field. Although the Reynolds
number for the whole flow is of order 10°, the flow shape is streamlined and
the volume density of the balls is low so separation may not occur. This is a
standard approximation in the theory of streamlined bodies. Since the Mach
numbers in the flow are low we assume the density of the air is constant. There
are no satisfactory continuum theories for granular flows — attempts to extend
the kinetic theory of granular matter to dense flows have not been successful
— s0 a direct approach is necessary where the equation of motion for each ball
are integrated. This is feasible for systems of several million balls on current
supercomputers.

We choose a simple model for ball-ball and ball-ground interactions. We
assume that the normal force N is given by a damped spring and that the
tangential force is given by Coulomb friction. The friction force is thus uN
opposing the direction of slip, or 0 when there is no slip. This form of friction
law is not accurate for long lasting contacts. A more realistic friction law requires
that the friction can take all values between —uN and +uN depending on the



history of the contact and thus requires extra variables to describe the history of
the contact. During the flow the the volume densities are low, thus the contact
times between balls will be small so the complexity of accurately modeling static
force distributions is unnecessary for these flows.

We scale the air pressure by the air density and eliminate gravity by adding
a static potential, x - g, to the pressure. Since we envisage solving the fluid
flow equations over a scale larger than ball diameter there is no direct coupling
between air pressure changes and air shear rates and the balls. Coupling between
the balls’ angular velocity and the air is also neglected. The direct effect of the
static air pressure on the balls is accounted for by adjusting the gravitational
force acting on the balls.

The system obeys the following equations for conservation of volume, mass
and momentum

cotcp=1 volume identity

(ca)t + V- (cqug) =0 mass conservation

ugt+ (ug - V)uo=—Vp+F  air momentum conservation

mi; = mg* +f;; + h; — c4p,F; ball i momentum conservation

md? [4vr; = —ri; A (fij + hy) ball ¢ angular momentum conservation

The independent variables are the following:

¢, volume density of air

u, air velocity

p air pressure

r; position of ball ¢

u; velocity of ball ¢

w; angular velocity of ball ¢

The auxillary variables are the following:

e = 2i ljx—r;|<d/2 volume density of balls
F=>,F,; total drag
Fi(x) = ugi|uri|Cp(d|ur;i|/v)/d drag on ball 4

Cy(z) =24/2+04 drag coefficient
fz’j = lrij<d/2(f'ij + //'btiij)[kb(d/2 — Tij) + nbf‘ij . uij] ball-ball force
h =1, <a2(Rgi + tgtgi)[kg(d/2 — rg4i) +mglyi - ug] ball-ground force

where ug; = u; — u, is the relative velocity between air and ball ¢

ri; = (r;—r;)/2 is the vector to the contact point, u;; = u; —u; — 1 A (w; +w;)

is the ball-ball relative velocity, t;; = u;; — ;;(¥;; - u;;) is the ball-ball tangential

velocity. ry;, ug; and tg; are similarly defined for ball-ground collisions.
Standard vector calculus notation is used where |.| denotes the norm and ~ a

unit vector. Thus for a vector v

v o= |v| (1)
{v/|v| v >0 @
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0 |v|=0.



The indicator function is defined for an inequality R by

1 ifR
1r = { 0 if not R. (3)

The main parameters (at standard temperature and pressure) are the following:

symbol value description

m 248 x 1073kg  mass

d 3.78 x 1072m  ball diameter

k 2.5 x 10*Nm~!  ball stiffness

ep 0.8 ball-ball restitution

b 0.3 ball-ball friction

€g 0 ball-ground restitution
g 0.3 ball-ground friction

Pa 1.21kgm 3 air density

v 1.5 x 1075 m?s~! kinematic air viscosity
g 9.81ms 2 gravity

The auxillary parameters are the following:

symbol description
v =n/6d ball volume
pp=m/v ball density
g* =gl — pa/ps) buoyancy adjusted gravity

m = —2Vkm/\/1+ (7/logey)? ball-ball damping constant
Ng = —2\/km/\/1 + (m/logeg)? ball-ground damping constant

The equations of motion for the balls are integrated explicitly by using the
leapfrog algorithm. To solve the fluid equations we write them using the convec-
tive derivative £- = % +u-V as

Dt

Dc

Dt“ +cV-u, = 0, (4)
Du

— -F =0
o T VP ; (5)

Rearranging by taking the divergence of eq. 5 and substituting in 4 gives
D (1 Dc
2
V= i (o pr ) st = (©)

a Poisson equation for the pressure. Given the ball concentration ¢, the equations
can then be integrated by solving eq. 6 for the pressure and then using this in
eq- 5 to solve for the velocity.

Implementation

We have developed a program for DEM (Discrete Element Method) simulations
that can handle arbitrary geometries constructed from sections of planes and
cylinders, in two or three dimensions and in single or double precision.



The collision detection is normally the most time consuming part of a DEM
simulation. Naive collision detection algorithms take O(NN?) time. Nearest neigh-
bor schemes using adjacency lists take O(N log N), but with a large scaling con-
stant. Grid schemes, where the balls are first stored on a grid then adjacent
grid squares checked for collisions, are O(N). However, traditional schemes in-
cur a time and memory cost proportional to the size of the grid which covers
the whole geometry. For dense granular systems this method is efficient, but for
open systems is impractical — a grid large enough to cover the whole ski jump
would require 100GB of memory. We have developed a new algorithm where the
grid is dynamically resized to exactly match the extent of the flow. Collisions
are detected by calculating the grid cell for each ball. Then storing the grid
coordinates in the ball list and the ball number in the grid. Next for each ball
the balls in half of the adjacent squares on the grid are checked for collisions.
Once the collisions have been detected the ball list is then used to clear the grid.
The algorithm is thus O(N) per time step independent of the geometry or flow
volume.

Other contact algorithms have directly searched and cleared the grid. These
algorithms are O(V'), where V is the volume of the grid. though easier to program
and parallelize they are much less efficient except when the balls are confined to
a small volume. In our algorithm the only cost proportional to V is the initial
clearing and allocation of the grid, which is only performed once per simulation.

The balls in the simulation can all be the same, all be different, or be divided
into a small number of classes. The collision detection algorithm however is
inefficient if there is a wide disparity of ball sizes it scales as (dmax/d
3 dimensions).

The program has been tested on single processor systems and can run sim-
ulations of the Miyanomori simulations with 10,000 balls in reasonable time —
a few hours to a few days depending on the system. To simulate the large flows
the program is designed to run on the University of Hokkaido’s Hitachi SR2201.
This is a massively parallel supercomputer with 128 active nodes so that sim-
ulations with around 10 million balls should be possible. The code has been
written, but due to problems with the compiler and operating system it has not
yet been tested and debugged.

The air flow equations have not yet been incorporated into the model. In the
simulations the air flow is taken to be zero.
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Simulation results

The simulations are reasonably accurate for small avalanches (up to 1000 balls),
but inaccurate for larger ones. All the simulated flows very rapidly spread out
to a thin flow layer less than one ball thick (on average). This then flows down
the slope like a solid body expanding or contracting depending on the curvature
of the slope. The density is non-uniform indicating some inelastic collapse, but
none other of the macroscopic features of the real flow are seen. Fig. 1 shows a
six thousand ball simulation.

Though we cannot currently directly simulate the larger flows a two dimen-
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Figure 1: 6000 ball simulation



sional flow of N balls will have similarities with a three dimensional flow of N3/2
balls. Thus we can investigate a 350,000 ball 3 dimensional flow with a 5,000 ball
2 dimensional flow. These simulations also show very strong damping and rapid
spreading. That is the flows behave like a slowly elongating solid body with
almost no internal motion. This is not surprising. Without interaction with a
non-constant air flow there are only very weak mechanisms to generate internal
motion and any internal motion is rapidly damped, even when the restitution
coefficients are close to one.

We can also run the simulation with an increased ball size so as to represent
a larger number of balls. Figure 2 shows a simulation with one thousand balls
where the ball radius is increased by a factor of seven so that each ball has
the volume of 350 real ping pong balls. Thus the whole flow has the volume
of a 350,000 ball flow. Results from simulations with altered radii cannot be
compared with the data but they make it much easier to see the individual
motion of the balls.

The large flows attain mean speeds of more than five times the speed of a
single ball on the slope. They achieve such speeds because of the acceleration
of the air, so it is no surprise that the current simulations assuming zero air
velocity are incorrect. The failure of the incomplete model supports our physical
intuition that the air flow dynamics are crucial to understanding the ping-pong
ball flows. We hope to complete the model with the air flow over the coming
year.

Global models

A completely different approach is to try to describe the global features of the
whole flow without attempting to model the microscopic behavior. To do this we
try to use dimensional analysis to deduce a set of simple equations that describe
the front position of the flow. We choose the front of the flow because it is clearly
visible. The center of mass is much harder to measure because of the disperse
nature of the tail. Since the size of the flow varies a length scale is also needed
to describe the state of the flow. A more involved model would include a second
length scale so that, for example, height and width were included independently.

The accelerating force on the flow is simple and due only to gravity g* sin6(z),
where 6 is the slope angle. Henceforth we will drop the superscript * on g but
always mean the buoyancy adjusted gravity.

Ground interaction

There are three main processes which will cause apparent drag between the balls
and the slope.

When a ball’s linear velocity does not match its angular velocity there is
slip between the ball and the surface and there is a resistive force of magnitude
mugcos B in the direction opposing the relative motion. Since the balls are
shells and the collisions are totally inelastic each time they collide with the
ground, assuming no initial rotation, they lose half their downslope velocity
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Figure 2: 1000 ball simulation scaled to 350,000 balls



before slipping stops. However, each ball only hits the ground at most once,
since the inelastic nature of the ground make it impossible for rolling balls to
become airborne (unless there are very high air velocities.) To calculate the effect
of this force we need to know the rate of collisions. A reasonable approximation
is that the rate is constant per distance traveled. Then the rate of impacts is
mv/Lkg s !, where X is the length of the slope. Then the resistive force due

to Coulomb friction is

va

X (7)
Note that the coefficient of friction ;1 does not enter in to this analysis and
that the basic velocity independent friction term has contributed a drag term
proportional to velocity squared. This approximation is valid when the flow is
collisional, that is ball are not in contact for long periods of time. Collisions of
balls with balls on the ground are also neglected. These effects can be partly
allowed for at the expensive of an experimentally determined constant. The same
form of the drag law occurs if we determine the rate of collisions by mycp Av =
muv/h, where A is the surface area of the flow and h the height.

For balls rolling along the ground there is no Coulomb frictional drag, but
instead drag caused by collisions with surface roughness. If we imagine this
roughness as being composed of obstacles height h, spacing z, the balls will
hit obstacles at a rate of v/z and receive an impulse of tan ¢+/2gh cos 6, where
rcos¢ + h = r. in the usual case, when r > h, the total resistive force is
2v(h/s)\/gcos8/r. Thus this drag force is linear in velocity.

The final force is due to the special structure of the ski jump. It is made from
overlapping layers of bristles. Where the bristles overlap the next layer there is a
drop. The balls rolling down the slope thus free-fall briefly as they roll over the
lip and then dissipate energy in the inelastic collision with the ground. If ¢ is
the angle of the flat sections then this produce a resistive force of mgsin(6 — ¢).

All three of these ground drag forces are small compared to mg in the middle
of the slope and in the first order analysis we present here they are all neglected.
This approach is supported by the data since the velocity profile for the balls is
flat — ball velocities are not lower near the ground.

Air drag

The Reynolds number for the flow if of the order 10° (based on flow height 1m
velocity 15ms~1!). Since the flow is reasonably streamlined and porous we can
assume that separation does not occur and ignore viscosity. The air drag force
can then only depend on the air density, front velocity and the length scale. The
only combination of these with the correct dimensions is pv?>L?. The implicit
assumptions here are that the air flow is in an equilibrium state in the frame of
reference moving with the flow. And that the pressure variation due to the slowly
changing nature of the flow are small. These assumptions are widely made when
considering air drag on objects and will result only in small errors. The biggest
source of error here comes from only using one length scale. At the start of the
flow the length scale of the box will be important, and at the end of the flow
the length scale of the individual balls will be important. In fact any flow on a



long enough slope will eventually be reduced to a single thickness flow so needs
at least two length scales to describe it. These additional length scales could
also be regarded as dimensionless parameters (Scaling L to get a length) that
describe the shape of the flow. In fact by including an arbitrary number of these
parameters one can obtain approximations of any degree to the shallow water
equations. To first order, a little after the flows have left the box, and before
the flows become degenerate we can hope that one length scale is a reasonable
approximation.
The equation of motion for the front of the flow is thus

mb = mgsin@ — pv’L?,

where m is the flow mass, v is front velocity, p air density, g gravity, m flow
mass, 0 slope angle and L the length scale.

Non-dimensional parameters that have been excluded are the Froude number
Fr = %-29, the relative density ”ﬁl—S and the length scale ratio L/r. The Froude
number represents the gravitational spreading of the flow and is important ini-
tially for the flow out of the box. The relative density is a measure of the porosity
of the flow (the amount of air in the flow) and will effect the drag coefficient (ab-
sorbed into the length scale in the equation). We show that scaling the equations
with respect to leaves these parameters unaffected and partly explains the excel-
lent agreement of the data with the scaling laws. The last parameter, the length
scale ratio, will only be important for flows as they spread out to one ball thick
and can be ignored for large flows at Miyanomori.

The length scale of the flow will also obey a differential equation depending

on the Froude number
dL

dt
where a(Fr) is an unknown dimensionless function.

= ve(Fr),

Different sized flows

Now we consider the equations applied to flows of N balls. The mass of the flow
m = Nmj and we define a dimensionless function 8 such that L = N'/378. g
will be of order 1 and independent of N for non-degenerate flows. Equation is
then
U = gsinf — pﬂQTQUQN_l/?’mb_l
For steady state, v = 0, it is immediately apparent that the velocity scales as
v=N"1/6

. The middle of the track (the k-point) has constant angle and the front velocities
of the flows are roughly constant. The excellent agreement is shown in fig. 3.
The scaling constant is determined by least squares.

The success of this simple analysis is partly explained by the independence
on N of the relative density,
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Front velocity at K point
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Figure 3: Front velocity at k-point
, and the Froude number,
L
Fr=—J-2
v 0]
, where & = vN~'/6(rg)~'/2 is the non-dimensionalized velocity. The non-

dimensionalized velocity is shown in fig. 4 for two flows of 20,000 and 200,000
balls. The initial surge out of the box is clearly seen after which the velocity
decreases on the relatively flat slope. As the slope angle increases the flows accel-
erate to roughly the same (non-dimensionalized) velocity. The large variations
in the velocities are due to inaccuracies in the measurement procedure.

The data for front positions and velocities are limited and contains large
errors so, at present, the data are too limited to quantatively analyze the length
scale change functions o and 8. However, fig shows that after the initial surge
it is at least plausible that 8 is the same, roughly constant, function for both
flows.

Structure of the flow

Air velocity data shows that air velocity increases over the length of the head
(= 1m) and that the air velocities are too low to overcome gravity — vertical
currents in excess of 7.5ms ! would be necessary. Thus the air is not dragging
the balls up in the head. On a smooth inelastic slope there are no forces to cause
vertical ball motion, and indeed any such initial motion is rapidly damped out.
This is confirmed by the two and three dimensional simulations. Table 1 shows
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the the velocity standard deviation in a flow calculated from the video camera
data. The interesting feature to notice here is the large downslope velocity

head body tail
perpendicular 1.73 145 <0.1
down-slope 144 0.78 <0.1
cross-slope 0.72 0.56 <0.1

Table 1: Velocity standard deviation (ms~!) for a 300,000 ball flow

deviation in the head compared to the body. This suggest that the height of
the head, and the abrupt collapse of the height in the body can be explained as
follows. The horizontal velocity of the air rapidly increases to the mean speed
of the flow over the length of the head. The drag force accelerating the air
strongly decelerates the balls leading to the high fluctuations in the down-slope
velocity component. The balls collide and the horizontal velocity differences
become vertical velocities thus causing the high head. In the body the drag of
the air on the balls is very small since they are moving with similar velocities
and there is much less internal motion so the height of the flow is much less.
From another point of view, the drag force on the balls in the head increases
the granular temperature and thus pressure in the head which can then support
a large height of balls. Once the air has reached the mean speed the granular
temperature (internal velocity variations) decrease and the height of the flow is
reduced.



